相控陣天線方向圖——第3部分:旁瓣和錐削
發(fā)布時(shí)間:2020-09-17 來源:Peter Delos, Bob Broughton, 和 Jon Kraft 責(zé)任編輯:wenwei
【導(dǎo)讀】在第一部分中,我們介紹了相控陣概念、波束轉(zhuǎn)向和陣列增益。在第二部分中,我們討論了柵瓣和波束斜視概念。在這第三部分中,我們首先討論天線旁瓣,以及錐削對(duì)整個(gè)陣列的影響。錐削就是操控單個(gè)元件的振幅對(duì)整體天線響應(yīng)的影響。
在第一部分中未應(yīng)用錐削,且從圖中可以看出第一旁瓣為–13 dBc。錐削提供了一種減少天線旁瓣的方法,但會(huì)降低天線增益和主瓣波束寬度。在簡要介紹錐削之后,我們會(huì)詳細(xì)說明與天線增益相關(guān)的幾個(gè)要點(diǎn)。
傅里葉變換:矩形函數(shù) ↔ sinc函數(shù)
在電氣工程中,有各種不同的方法可以將一個(gè)域中的矩形函數(shù)轉(zhuǎn)變?yōu)榱硪粋€(gè)域中的sinc函數(shù)。最常見的形式是時(shí)域中的矩形脈沖轉(zhuǎn)換成sinc函數(shù)的頻譜分量。這個(gè)轉(zhuǎn)換過程是可逆的,在寬帶應(yīng)用中,寬帶波形也可以轉(zhuǎn)換為時(shí)域中的窄脈沖。相控陣天線也具有類似的特性:沿陣列平面軸的矩形加權(quán)按照正弦函數(shù)輻射方向圖。
應(yīng)用到此特性,以sinc函數(shù)表示的第一旁瓣只有-13dBc是有問題的。圖1顯示了這個(gè)原理。
圖1.時(shí)域中的矩形脈沖在頻域中產(chǎn)生正弦函數(shù),第一旁瓣僅為–13 dBc。
錐削(或加權(quán))
要解決旁瓣問題,可以在整個(gè)矩形脈沖內(nèi)使用加權(quán)處理。這在FFT中很常見,相控陣中的錐削選項(xiàng)則是直接模擬了FFT中加權(quán)。遺憾的是,加權(quán)也是存在缺點(diǎn)的,它雖然實(shí)現(xiàn)了減少旁瓣但需要以加寬主瓣為代價(jià)。圖2顯示了一些加權(quán)函數(shù)示例。
圖2.加權(quán)函數(shù)示例。
波形與天線類比
從時(shí)間到頻率的轉(zhuǎn)換是很平常的,大多數(shù)電氣工程師自然會(huì)明白。但是,對(duì)于剛接觸相控陣的工程師來說,如何使用天線方向圖類比在一開始并不明確。為此,我們用場域激勵(lì)代替時(shí)域信號(hào),并用空間域代替頻域輸出。
時(shí)域 → 場域
● v(t)—電壓是時(shí)間的函數(shù)
● E(x)—場強(qiáng)與孔徑中的位置呈函數(shù)關(guān)系
頻域 → 空間域
● Y(f)—功率譜密度是頻率的函數(shù)
● G(q)—天線增益是角度的函數(shù)
圖3顯示了這些原理。在這里,我們比較了陣列中應(yīng)用兩種不同加權(quán)的輻射能量。圖3a和圖3c顯示場域。每個(gè)點(diǎn)表示這個(gè)N = 16陣列中一個(gè)元件的振幅。在天線之外,沒有輻射能量,輻射從天線邊緣開始。在圖3a中,場強(qiáng)出現(xiàn)突變,而在圖3c中,場強(qiáng)隨著距離天線邊緣的距離增大而逐漸增大。對(duì)輻射能量造成的影響分別如圖3b和圖3d所示。
圖3.顯示變窄元件轉(zhuǎn)化為輻射能量加權(quán)的圖表;(A)對(duì)所有元件使用統(tǒng)一加權(quán);(b)正弦函數(shù)在空間內(nèi)輻射;(c)對(duì)所有元件使用海明窗加權(quán)處理;以及(d)以加寬主波束為代價(jià),將輻射旁瓣降低到40 dBc。
在下一節(jié)中,我們將介紹影響天線方向圖性能的兩種附加誤差項(xiàng)。第一種是互耦。在本文中,我們只是提出存在此問題,并且給出用于量化此影響的EM模型的數(shù)量。第二種是由于在相移控制中精度有限而產(chǎn)生的量化旁瓣。我們對(duì)量化誤差進(jìn)行了更深入地處理,并對(duì)量化旁瓣進(jìn)行了量化。
互耦誤差
這里討論的所有方程和陣列因子圖都假設(shè)元件是相同的,并且每個(gè)元件都具有相同的輻射方向圖。但事實(shí)并非如此。其中一個(gè)原因是互耦,即相鄰元件之間耦合。元件分散在陣列中與元件彼此緊密排列相比,其輻射性能會(huì)發(fā)生很大變化。位于陣列邊緣的元件和位于陣列中心的元件所處的環(huán)境不同。此外,當(dāng)波束轉(zhuǎn)向時(shí),元件之間的互耦也會(huì)改變。所有這些影響會(huì)產(chǎn)生一個(gè)附加的誤差項(xiàng),需要天線設(shè)計(jì)人員加以考慮,在實(shí)際設(shè)計(jì)中,需要花大量精力使用電磁仿真器來表征這些條件下的輻射影響。
波束角度分辨率和量化旁瓣
相控陣天線還有另一個(gè)缺陷,用于波束轉(zhuǎn)向的時(shí)間延遲單元或移相器的分辨率是有限的。這通常利用離散時(shí)間(或相位)步長來實(shí)現(xiàn)數(shù)字控制。但是,如何確定延遲單元或移向器的分辨率或位數(shù),以達(dá)到的所需的波束質(zhì)量呢?
與常見的理解相反,波束角度分辨率并不等于移相器的分辨率。從方程式1(第二部分中的方程式2)中,我們可以看出這樣的關(guān)系:
我們可以用整個(gè)陣列中的相移來表達(dá)這種關(guān)系,需要將陣列寬度D替換為元件間隔d。然后如果我們將移相器ΦLSB 替換為?Φ,我們可以粗略估算波束角度分辨率。對(duì)于N個(gè)元件以半個(gè)波長間隔排列的線性陣列來說,波束角度分辨率如方程式2所示。
這是背離瞄準(zhǔn)線的波束角度分辨率,描述了當(dāng)陣列的一半相移為零,另一半的相移為移相器的LSB時(shí)的波束角度。如果不到一半的陣列通過編程達(dá)到相位LSB,則角度可能更小。圖4顯示使用2位移相器的30元件陣列的波束角度(相位LSB逐漸增加)。注意,波束角度增加,直到一半元件移相LSB,然后在所有元件移相LSB時(shí)歸零。當(dāng)波束角度通過陣列中的相位差而變化時(shí),這是有意義的。注意,正如前面計(jì)算的那樣,此特性的峰值為θRES。
圖4.30元件線性陣列在LSB時(shí)的波束角度與元件數(shù)量之間的關(guān)系。
圖5.移相器分辨率為2位至8位時(shí),波束角度分辨率與陣列大小的關(guān)系。
圖5顯示不同移相器分辨率下θRES與陣列直徑(元件間隔為λ/2)的關(guān)系。這表明,即使是LSB為90°的非常粗糙的2位移相器,也可以在直徑為30個(gè)元件的陣列中實(shí)現(xiàn)1°的分辨率。在第一部分使用方程式10針對(duì)30元件、λ/2間隔條件進(jìn)行求解時(shí),主瓣波束寬度約為3.3°,表示即便使用這個(gè)非常粗糙的移相器,我們也具備足夠的分辨率。那么,使用更高分辨率的移相器又會(huì)得出什么結(jié)果?從時(shí)間采樣系統(tǒng)(數(shù)據(jù)轉(zhuǎn)換器)和空間采樣系統(tǒng)(相控陣天線)之間的類比可以看出,較高分辨率的數(shù)據(jù)轉(zhuǎn)換器產(chǎn)生較低的量化本底噪聲。更高分辨率的相位/時(shí)間偏移器會(huì)導(dǎo)致較低的量化旁瓣電平(QSLL)。
圖6顯示之前描述的編程采用θRES波束分辨率角度的2位30元件線性陣列的移相器設(shè)置和相位誤差。一半陣列設(shè)為零相移,另一半設(shè)為90°LSB。注意,誤差(理想量化相移與實(shí)際量化相移之間的差異)曲線呈鋸齒狀。
圖6.陣列中的元件相移和相位誤差。
圖7顯示同一天線在轉(zhuǎn)向0°和轉(zhuǎn)向波束分辨率角度時(shí)的天線方向圖。請(qǐng)注意,由于移相器的量化誤差,出現(xiàn)了嚴(yán)重的方向圖退化。
圖7.在最小波束角度下具有量化旁瓣的天線方向圖。
當(dāng)孔徑內(nèi)發(fā)生最大量化誤差,其他所有元件都是零誤差,且相鄰元件間隔LSB/2時(shí),出現(xiàn)最糟糕的量化旁瓣情形。這代表了最大可能的量化誤差和孔徑誤差的最大周期。圖8顯示了使用2位30元件時(shí)的這種情況。
圖8.最糟糕的天線量化旁瓣情形——2位。
這種情況在可預(yù)測的波束角度下(如方程3所示)發(fā)生。
其中 n < 2BITS,且n為奇數(shù)。對(duì)于2位系統(tǒng),這種情況會(huì)在±14.5°和±48.6°范圍之間發(fā)生4次。圖9顯示該系統(tǒng)在n = 1,q = +14.5°時(shí)的天線方向圖。注意在–50°時(shí)具有明顯的–7.5 dB量化旁瓣。
圖9.最糟糕的天線量化旁瓣情形:2位,n = 1,30元件。
除了量化誤差依次為0和LSB/2的特殊情況外,在其他波束角度下,rms誤差隨著波束在孔徑上的擴(kuò)散而減小。事實(shí)上,對(duì)于n為偶數(shù)值的角度方程(方程式3),量化誤差為0。如果我們繪制在不同移相器分辨率下最高量化旁瓣的相對(duì)電平,會(huì)出現(xiàn)一些有趣的方向圖。圖9顯示100元件線性陣列最糟糕的QSLL,該陣列使用海明錐形,以便將量化旁瓣與本節(jié)前面討論的經(jīng)典開窗旁瓣區(qū)分開來。
注意,在30°時(shí),所有量化誤差都趨于0,這可以顯示為sin(30°) = 0.5時(shí)的結(jié)果。請(qǐng)注意,對(duì)于任何特定的n位移相器,在最糟糕電平下的波束角度在更高分辨率n下會(huì)顯示零量化誤差。在這里可以看出描述的最糟糕旁瓣電平下的波束角度,以及QSLL在每位分辨率下改善了6 dB。
圖10.在2位至6位移相器分辨率下,最糟糕的量化旁瓣與波束角度的關(guān)系。
圖11.最糟糕的量化旁瓣電平與移相器分辨率的關(guān)系。
2位至8位移相器分辨率的最大量化旁瓣電平QSLL如圖11所示,它遵循類似的數(shù)據(jù)轉(zhuǎn)換器量化噪聲規(guī)律,
或每位分辨率約6 dB。在2位時(shí),QSLL電平約為-7.5 dB,高于數(shù)據(jù)轉(zhuǎn)換器進(jìn)行隨機(jī)信號(hào)采樣時(shí)經(jīng)典的+12 dB。這種差異可以視為在孔徑采樣時(shí)周期性出現(xiàn)的鋸齒誤差導(dǎo)致的結(jié)果,其中空間諧波會(huì)增加相位。注意QSLL與孔徑大小不呈函數(shù)關(guān)系。
總結(jié)
我們現(xiàn)在可以總結(jié)出天線工程師面臨的與波束寬度和旁瓣相關(guān)的一些挑戰(zhàn):
● 角度分辨率需要窄波束。窄波束需要大孔徑,這又需要許多元件。此外,波束在背離瞄準(zhǔn)線時(shí)會(huì)變寬,所以需要額外的元件,以在掃描角度增大時(shí)保持波束寬度不變。
● 似乎可以通過增大元件間隔來擴(kuò)大整個(gè)天線區(qū)域,而無需額外增加元件。此舉可以讓波束變窄,但是,很遺憾,如果元件分布不均,會(huì)導(dǎo)致產(chǎn)生柵瓣??蓢L試通過減小掃描角度,同時(shí)采用有意隨機(jī)顯示元件方向圖的非周期陣列,來利用增加的天線區(qū)域,同時(shí)最大限度減少柵瓣問題。
● 旁瓣是另一個(gè)問題,我們已知可以通過將陣列增益朝向邊緣逐漸減小來解決。但是,這種錐削以波束變寬為代價(jià),又會(huì)需要更多元件。移相器分辨率會(huì)導(dǎo)致出現(xiàn)量化旁瓣,在設(shè)計(jì)天線時(shí)也必須加以考慮。對(duì)于采用移相器的天線,波束斜視現(xiàn)象會(huì)導(dǎo)致角位移與頻率相互影響,從而限制高角度分辨率下可用的帶寬。
以上就是有關(guān)相控陣天線方向圖全部三個(gè)部分的內(nèi)容。在第一部分中,我們介紹波束指向、陣列因子和天線增益。在第二部分中,我們討論柵瓣和波束斜視的缺點(diǎn)。在第三部分中,我們討論錐削和量化誤差。本文不是針對(duì)精通電磁和輻射元件設(shè)計(jì)的天線設(shè)計(jì)工程師,而是針對(duì)在相控陣領(lǐng)域工作的大量相鄰學(xué)科的工程師,這些直觀的解釋,將有助于他們理解影響整個(gè)天線方向圖的性能的各種因素。
參考電路
Balanis, Constantine A. 天線理論、分析和設(shè)計(jì)。第3版,Wiley,2005年。
Mailloux, Robert J. 相控陣天線手冊。第2版。Artech House,2005年。
O’Donnell, Robert M. “雷達(dá)系統(tǒng)工程:簡介。” IEEE,2012年6月。
Skolnik, Merrill. 雷達(dá)手冊。第3版,McGraw Hill,2008年。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動(dòng)傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器