使用混合信號(hào)示波器調(diào)試嵌入式混合信號(hào)設(shè)計(jì)
發(fā)布時(shí)間:2021-06-03 責(zé)任編輯:lina
【導(dǎo)讀】目前,基于微控制器(MCU)和數(shù)字信號(hào)處理器(DSP)的嵌入式設(shè)計(jì)一般都會(huì)同時(shí)帶 有模擬信號(hào)和數(shù)字信號(hào)成分。傳統(tǒng)上,設(shè)計(jì)師是用示波器和邏輯分析儀進(jìn)行測(cè)試和調(diào) 試;而現(xiàn)在,新一類測(cè)量工具——混合信號(hào)示波器(MSO)——已經(jīng)能夠提供更好的 方法來(lái)調(diào)試這些 MCU 基和 DSP 基混合信號(hào)嵌入式設(shè)計(jì)。
目前,基于微控制器(MCU)和數(shù)字信號(hào)處理器(DSP)的嵌入式設(shè)計(jì)一般都會(huì)同時(shí)帶 有模擬信號(hào)和數(shù)字信號(hào)成分。傳統(tǒng)上,設(shè)計(jì)師是用示波器和邏輯分析儀進(jìn)行測(cè)試和調(diào) 試;而現(xiàn)在,新一類測(cè)量工具——混合信號(hào)示波器(MSO)——已經(jīng)能夠提供更好的 方法來(lái)調(diào)試這些 MCU 基和 DSP 基混合信號(hào)嵌入式設(shè)計(jì)。雖然 混合信號(hào)示波器MSO 在市場(chǎng)上出現(xiàn)已將近 20 年,但大多數(shù)工程師卻從未接觸過(guò)這種儀器,許 多工程師對(duì)它們的好處和使用方式存在著誤解。許多示波器廠商都推出了融有模擬和 數(shù)字時(shí)間相關(guān)測(cè)量能力的混合型時(shí)域儀器,但您一定要清楚這些儀器的差別,確切了 解它們能做什么和不能做什么。 本文首先從混合信號(hào)示波器的定義開(kāi)始,簡(jiǎn)要介紹了 MSO 所適應(yīng)的主要應(yīng)用領(lǐng)域; 討論在典型的基于 MCU/DSP 設(shè)計(jì)中,為有效檢測(cè)各種模擬和數(shù)字 I/O 信號(hào)所需要的 通道數(shù)、帶寬和采樣率;還探討了為有效測(cè)試和調(diào)試嵌入式設(shè)計(jì),您所要求于 MSO 的各種混合信號(hào)觸發(fā)類型;所選用的混合信號(hào)嵌入式設(shè)計(jì)實(shí)例是基于 16bit 寬指令集 微控制器(Microchip PIC18)。本文還講述了使用 MSO 驗(yàn)證信號(hào)質(zhì)量時(shí)典型的調(diào)試 方法。
什么是混合信號(hào)示波器(MSO)?
MSO 是一種混合式測(cè)試儀器,它將數(shù)字存儲(chǔ)示波器(DSO)的所有測(cè)量能力(包括自動(dòng)定標(biāo), 觸發(fā)釋抑,模擬和數(shù)字通道的無(wú)限余輝以及探頭 / 通道偏移校正)與邏輯分析儀的部分測(cè) 量能力集成到單臺(tái)儀器中。有了 MSO,您就能在同一個(gè)顯示器上看到如圖 1 所示在時(shí)間 上對(duì)準(zhǔn)的模擬和數(shù)字波形。雖然 MSO 可能缺少全效邏輯分析儀的許多先進(jìn)數(shù)字測(cè)量能力 和龐大的數(shù)據(jù)采集通道數(shù),但對(duì)于今天的許多嵌入式設(shè)計(jì)調(diào)試應(yīng)用,MSO 仍有一些超過(guò) 傳統(tǒng)上同時(shí)使用示波器和邏輯分析儀的獨(dú)特優(yōu)點(diǎn)。
混合信號(hào)示波器MSO的主要優(yōu)點(diǎn)之一是它的使用方式,其操作方法在許多方面與示波器相同。設(shè)計(jì)和測(cè) 試工程師往往會(huì)盡量避免使用邏輯分析儀——即使是在需要高效調(diào)試復(fù)雜設(shè)計(jì)時(shí)——因?yàn)?掌握邏輯分析儀的使用方法要花費(fèi)大量時(shí)間。就算工程師了解邏輯分析儀的使用方法,對(duì) 特定測(cè)量所必須的設(shè)置也比設(shè)置示波器麻煩得多。此外,邏輯分析儀的先進(jìn)測(cè)量能力也增 加了復(fù)雜程度,通常會(huì)給今天的許多基于 MCU 和 DSP 設(shè)計(jì)帶來(lái)約束。
示波器是研發(fā)環(huán)境中最常用的測(cè)試儀器。所有嵌入式硬件設(shè)計(jì)師都有用示波器對(duì)混合信號(hào) 嵌入式設(shè)計(jì)進(jìn)行信號(hào)質(zhì)量和定時(shí)測(cè)量的基本操作知識(shí)。但對(duì)于監(jiān)視和測(cè)試多個(gè)模擬和數(shù)字 信號(hào)間的重要定時(shí)互動(dòng),2 通道或 4 通道示波器測(cè)量一般是不夠用的。而這正是混合信號(hào)示波器MSO 的用武之地。
由于 MSO 提供“正好夠用”的邏輯分析儀測(cè)量能力,而且操作難度沒(méi)有明顯增加,因此 正是調(diào)試嵌入式設(shè)計(jì)的理想工具。如前所述,MSO 的使用方式屬示波器類型。事實(shí)上, 您可簡(jiǎn)單地把 MSO 看成是一種多通道示波器,其中的模擬通道提供高垂直分辨率(通常 為 8bit);附加的邏輯 / 數(shù)字通道則提供低分辨率(1bit)測(cè)量。與松散型的雙機(jī)方案不同, 高度集成的 MSO 屬混合信號(hào)測(cè)量解決方案。它更便于用戶的使用,提供快速的波形更新率, 其操作更像是一臺(tái)示波器 — 而不像邏輯分析儀。
圖 1. Keysight InfiniiVision X 系列混合信號(hào)示波器(MSO)
波形更新率是所有示波器的一項(xiàng)重要特性,它直接影響儀器的使用。速度慢和反應(yīng)遲鈍都 會(huì)影響正常使用,這對(duì)于 DSO 和 MSO 也是同樣道理。因此當(dāng)示波器廠商把邏輯采集通道 置入 DSO 構(gòu)成 MSO 時(shí),絕不能犧牲波形更新率;否則,傳統(tǒng)示波器的使用方式將會(huì)受到 影響?;旌闲盘?hào)測(cè)量方案如果基于雙機(jī)配置,或者采用 USB 之類的外部通信總線來(lái)連接 邏輯接口就會(huì)反應(yīng)遲鈍和難以使用。而基于高度集成硬件架構(gòu)的 MSO 則有遠(yuǎn)為敏捷的響 應(yīng),用起來(lái)也容易得多。
如欲深入了解示波器波形更新速率的重要性,請(qǐng)下載本文結(jié)尾部分列出的是德科技應(yīng)用指 南《示波器波形更新速率決定偶發(fā)事件捕獲能力》。
在購(gòu)買 MSO 之前的評(píng)估過(guò)程中,您首先要對(duì)各廠家印刷手冊(cè)和在線資料(技術(shù)概覽)中 描述的工作特性和測(cè)量性能做個(gè)比較。這對(duì)于評(píng)估儀器的可使用性和響應(yīng)能力具有一定的 參考價(jià)值;但唯一最有效的方法還是要親自上手,進(jìn)行實(shí)際檢驗(yàn)。
典型 混合信號(hào)示波器MSO測(cè)量應(yīng)用和要求的性能
雖然 MSO 是用于捕獲混合信號(hào)器件上 — 如模數(shù)轉(zhuǎn)換器(ADC)和數(shù)模轉(zhuǎn)換器(DAC) — 模擬和數(shù)字信號(hào)的重要工具,但它們的主要測(cè)量應(yīng)用還包括驗(yàn)證和調(diào)試帶有嵌入地址 和數(shù)據(jù)總線的 MCU/DSP 基混合信號(hào)設(shè)計(jì)。圖 2 是具有微控制器內(nèi)核的典型混合信號(hào)嵌入 式設(shè)計(jì)的框圖。
盡管人們一般認(rèn)為微控制器和 DSP 是數(shù)字控制和處理器件,但今天絕大多數(shù) MCU 和 DSP 實(shí)際上是包含有嵌入模擬電路的混合信號(hào)器件。因此,需要檢測(cè)和驗(yàn)證系統(tǒng)中的這些 信號(hào),例如模擬 I/O、數(shù)字并行 I/O 端口,以及 I2 C 和 SPI 這類數(shù)字串行通信總線。
注意,圖 2 中的框圖沒(méi)有示出任何地址或數(shù)據(jù)總線信號(hào)。這是因?yàn)椋捍蠖鄶?shù) MCU 和 DSP 具有包括嵌入存儲(chǔ)器(RAM 和 ROM)的內(nèi)部總線結(jié)構(gòu)。
由于今天的 混合信號(hào)示波器MSO 一般有 16 個(gè)數(shù)字采集通道,因此一些工程師錯(cuò)誤地認(rèn)為 MSO 只能受限 于 8bit 的處理應(yīng)用(8bit 數(shù)據(jù)+ 8bit 地址 = 8 至 16 個(gè)通道)。但 MSO 主要用于檢測(cè)模 擬和數(shù)字 I/O,即通常在基于 MCU 和 DSP 設(shè)計(jì)中能夠得到的所有信號(hào)。不要嘗試把 MSO 中的數(shù)字采集通道數(shù)與基于內(nèi)部總線的 MCU 或 DSP 中的處理比特?cái)?shù)相關(guān)聯(lián),因?yàn)樗鼈?通常沒(méi)有關(guān)聯(lián)關(guān)系。為檢測(cè)和驗(yàn)證 8bit、16bit,有時(shí)甚至是 32bit 的 MCU/DSP 設(shè)計(jì),16 個(gè)數(shù)字采集通道及 2 個(gè)到 4 個(gè)模擬采集和觸發(fā)通道一般是富富有余的。
檢測(cè)基于外部總線設(shè)計(jì)(例如基于 32 bit 微處理器計(jì)算機(jī))中的并行地址和數(shù)據(jù)線并非 MSO 的主要測(cè)量應(yīng)用。
圖 2. 典型 MCU 基嵌入式設(shè)計(jì)
如果需要捕獲多個(gè)地址和數(shù)據(jù)總線信號(hào),以驗(yàn)證基于外部總線系統(tǒng)中的定時(shí)和源碼碼流, 那么具有狀態(tài)分析和反匯編能力的邏輯分析儀是更好的測(cè)量工具。但假若您同時(shí)還需要模 擬信號(hào)和或數(shù)字信號(hào)的模擬特性具有時(shí)相關(guān)性,那么多家廠商的雙機(jī)解決方案(示波器+ 邏輯分析儀)就要把示波器波形送入到具有時(shí)相關(guān)顯示的邏輯分析儀中。在您獲得這種更 高性能雙機(jī)測(cè)試解決方案的同時(shí),也不得不接受邏輯分析儀更為復(fù)雜的操作方式,包括慢 或單次的波形更新率。
但即使是在帶有外部存儲(chǔ)器器件的 32bit 系統(tǒng)中,具有 16 個(gè)邏輯定時(shí)通道及 2 個(gè)或 4 個(gè) 模擬通道的 MSO 對(duì)于測(cè)量關(guān)鍵定時(shí)參數(shù)通常也是足夠的。圖 3 是使用 MSO 在一個(gè) 32bit 系統(tǒng)中(IBM PowerPC 405 GP)驗(yàn)證高速存儲(chǔ)器器件(SDRAM)建立時(shí)間的例子。使用 MSO 的碼型觸發(fā)能力,只需 4 個(gè) MSO 數(shù)字通道就能完成對(duì)特定讀寫指令(CS、RAS、 CAS 和 WE)的測(cè)量。再用示波器的模擬通道進(jìn)一步限定在一個(gè)高速時(shí)鐘信號(hào)沿上觸發(fā), 并在對(duì)應(yīng)特定數(shù)據(jù)信號(hào)(中間的綠色跡線)的 100 MHz 時(shí)鐘信號(hào)上(上面的黃色跡線) 做關(guān)鍵的定時(shí)測(cè)量,從而得到對(duì)該外部存儲(chǔ)器器件的測(cè)量,測(cè)得建立時(shí)間為 8 ns。用常規(guī) 2 通道或 4 通道 DSO 進(jìn)行這樣的測(cè)量是不可能的,而使用與高速示波器相鏈接的邏輯分 析儀進(jìn)行這種測(cè)量則極為費(fèi)時(shí)。
圖 3. 在 32 bit 系統(tǒng)中用 MSO 進(jìn)行關(guān)鍵的建立時(shí)間測(cè)量
對(duì)于混合信號(hào)嵌入式設(shè)計(jì)中的這類信號(hào)完整性測(cè)量,MSO 的模擬和數(shù)字采集性能要遠(yuǎn)比 通道數(shù)重要。示波器模擬采集性能的最基本指標(biāo)是帶寬和采樣率。為進(jìn)行具有合理精度的 模擬測(cè)量,示波器帶寬至少應(yīng)該是所關(guān)注信號(hào)最高頻率成分的五倍。例如,若需要用示波 器模擬通道檢測(cè)最大轉(zhuǎn)換時(shí)鐘頻率為 200 MHz 的數(shù)字信號(hào),為能以合理精度捕獲到第 5 次諧波,示波器的模擬帶寬應(yīng)達(dá)到 1 GHz。對(duì)于實(shí)時(shí)單次測(cè)量,示波器的采樣率應(yīng)是示波 器帶寬的 4 倍,或更快。要了解有關(guān)示波器帶寬和采樣率關(guān)系的更多情況,請(qǐng)下載閱讀是 德科技應(yīng)用指南“針對(duì)您的應(yīng)用選擇適當(dāng)帶寬的示波器”和“評(píng)估示波器采樣率與采樣保 真度的關(guān)系:如何獲得最精確的數(shù)字測(cè)量結(jié)果”(將在本文結(jié)尾部分列出)。
可惜有些示波器和邏輯分析儀的使用者并未充分認(rèn)識(shí)到 MSO 和邏輯分析儀需要具有怎樣 的數(shù)字采集性能?;旌闲盘?hào)示波器MSO 具有與示波器模擬采集性能相當(dāng)?shù)臄?shù)字采集性能是非常重要的。 但這并不意味著它就是高性能示波器和低性能邏輯定時(shí)分析儀的簡(jiǎn)單組合。是德科技推薦 MSO 的數(shù)字 / 邏輯采集系統(tǒng)的采樣率至少應(yīng)達(dá)到示波器模擬采集通道帶寬的兩倍。在上 面我們剛剛討論的例子中,需要用 1 GHz 示波器捕獲轉(zhuǎn)換 / 時(shí)鐘率為 200 MHz 數(shù)字信號(hào) 的模擬特性,而以合理的定時(shí)精度在 MSO 的數(shù)字 / 邏輯通道上捕獲同樣信號(hào),則要求數(shù) 字 / 邏輯通道達(dá)到 2 GSa/s 的采樣率。
當(dāng)您使用邏輯 / 數(shù)字采集通道時(shí),測(cè)量分辨率被限制為 ±1 個(gè)采樣周期。例如,如果您打 算用 200 MHz(周期 = 5ns)的最大跳轉(zhuǎn) / 時(shí)鐘率捕獲數(shù)字信號(hào),每個(gè)高或低脈沖可能會(huì) 窄到 2.5 ns(假定為 50% 占空比)。這意味著如果您的 MSO 數(shù)字采集系統(tǒng)用 2 GSa/s 的 最大速率采樣,那么在任一脈沖沿上的定時(shí)測(cè)量會(huì)達(dá)到 ±500 ps 的誤差,這對(duì)于時(shí)間差 測(cè)量來(lái)說(shuō)就是最壞條件下的 1 ns 峰峰誤差,即 2.5 ns 脈沖上的 40% 誤差。我們相信無(wú)論 是對(duì)于 MSO 還是邏輯分析儀,超過(guò) 40% 的定時(shí)誤差都是無(wú)法接受的,這正是我們推薦數(shù) 字采集通道采樣率必須至少為示波器帶寬兩倍的原因。
除帶寬和采樣率外,要考慮的另一重要因素是探測(cè)帶寬;包括模擬和數(shù)字系統(tǒng)探測(cè)的帶寬。 如果您要捕獲有超過(guò) 500 MHz 重要頻率分量的模擬或數(shù)字信號(hào),就要在模擬通道上使用 有源探頭。同樣,數(shù)字采集系統(tǒng)的探頭也必須能夠?yàn)閿?shù)字系統(tǒng)的采樣電路提供更高頻率的 信號(hào),從而能可靠地捕獲到更高頻率脈沖序列中的每一個(gè)脈沖。
混合信號(hào)觸發(fā)
對(duì)于模擬和數(shù)字 I/O 信號(hào)的特定互動(dòng),MSO 的更多采集通道(與 DSO 相比)意味著您現(xiàn)在有了更具針對(duì)性的更多觸發(fā)可能。雖 然 MSO 尚不具備高性能邏輯分析儀的各種復(fù)雜觸發(fā)能力,但也 已遠(yuǎn)遠(yuǎn)超過(guò)標(biāo)準(zhǔn) 2 通道或 4 通道示波器的有限觸發(fā)能力。
今天市場(chǎng)上的多數(shù) MSO 和混合信號(hào)測(cè)量解決方案能至少在一種 電平的并行碼型觸發(fā)條件上觸發(fā),有些 MSO 更能提供具有復(fù)位 條件的兩種電平碼型序列觸發(fā)。但即使您使用相對(duì)簡(jiǎn)單的單電平 碼型觸發(fā),也會(huì)發(fā)現(xiàn)各種 MSO 混合信號(hào)測(cè)量解決方案在觸發(fā)能 力上存有巨大差異。首先非常重要的一點(diǎn)是,MSO 要能在模擬 和數(shù)字輸入的組合上觸發(fā)。對(duì)于有些混合信號(hào)測(cè)量解決方案,由 于其模擬通道和邏輯通道間的信號(hào)偏移,它們只能在采集系統(tǒng)的 一邊(模擬邊或數(shù)字邊)實(shí)施較為可靠的觸發(fā)。也就是說(shuō)您只 能在傳統(tǒng)的模擬觸發(fā)條件上,或僅在并行數(shù)字條件上觸發(fā)示波 器——而不能同時(shí)在兩種條件上觸發(fā)。MSO 應(yīng)能提供混合信號(hào) 觸發(fā)能力,并且在觸發(fā)的模擬通道和數(shù)字通道確保精確的時(shí)間校 準(zhǔn)。我們?cè)诒疚暮竺孢€將給出需要在混合信號(hào)條件下進(jìn)行觸發(fā)的 另一個(gè)例子。在該例中,要求在特定輸出相位上對(duì) MCU 控制的 DAC 同步示波器的模擬和數(shù)字采集。
對(duì)于碼型觸發(fā)的 MSO 混合信號(hào)測(cè)量解決方案來(lái)說(shuō),還有一項(xiàng)重 要的考慮因素,就是看它是否帶有任何類型的時(shí)間限定。除送入, 與 / 或退出觸發(fā)限定外,碼型觸發(fā)條件還應(yīng)包括最小時(shí)間限定條 件。為說(shuō)明這一點(diǎn),一種簡(jiǎn)單的方法就是:先在不穩(wěn)定的跳變狀態(tài)下進(jìn)行觸發(fā);然后再來(lái)演示示波器可以用怎樣的工具避免這 種不穩(wěn)定。圖 4 是使用 Keysight 6000 X 系列 MSO執(zhí)行碼型 CE (1100 1110)觸發(fā)的例子。屏幕上方清楚地顯示了信號(hào)的整體 情況,從中可以看到:總線上 DE 和 E4 之間的 CE 和 EE 是很不 穩(wěn)定的跳變狀態(tài)。這應(yīng)該就是用戶最不希望出現(xiàn)的觸發(fā)情況了。 此時(shí),用戶可以使用示波器的時(shí)間限定菜單(Qualifier)為觸發(fā) 設(shè)定時(shí)間閾值。即:讓觸發(fā)狀態(tài)必須保持比規(guī)定的時(shí)間更長(zhǎng)或更 短;或者保持在規(guī)定的時(shí)間范圍內(nèi),或在規(guī)定的時(shí)間范圍外。
圖 4. 沒(méi)有最小時(shí)間限定,示波器在跳變的 / 不穩(wěn)定的狀態(tài)下進(jìn)行觸發(fā)
為避免在跳變的不穩(wěn)定的條件下觸發(fā),具備最小時(shí)間限定能力是 很重要的。當(dāng)并行數(shù)字信號(hào)改變狀態(tài)時(shí),切換過(guò)程可能為幾乎同 時(shí) — 但并非嚴(yán)格的同時(shí)。除了信號(hào)在非高非低時(shí)的有限上升和 下降速度外,即使是在經(jīng)過(guò)最好設(shè)計(jì)的系統(tǒng)中,信號(hào)間也會(huì)有微 小的延遲。這意味著您的系統(tǒng)在信號(hào)切換時(shí),始終存在跳變的 / 不穩(wěn)定的信號(hào)條件。如有可能,您當(dāng)然希望 DSO/MSO 或邏輯 分析儀能避免在這些不穩(wěn)定條件下觸發(fā)。
示波器(包括 MSO)有能力精確地在模擬觸發(fā)電平 / 閾值渡越 點(diǎn)觸發(fā),而邏輯分析儀通常使用基于樣本的觸發(fā)。基于樣本的觸 發(fā)將產(chǎn)生 ±1 個(gè)取樣周期的峰峰觸發(fā)抖動(dòng)不確定度(最壞條件 下峰峰不確定度 = 2 個(gè)取樣周期)。我們通過(guò)“基于樣本的觸發(fā)” 首先讓儀器對(duì)輸入信號(hào)隨機(jī)取樣,然后根據(jù)取樣數(shù)據(jù)建立觸發(fā)參 考點(diǎn)。這種類型的觸發(fā)會(huì)產(chǎn)生明顯的觸發(fā)抖動(dòng),這對(duì)于某些典型 邏輯分析儀可能是允許的,但對(duì)用于觀察重復(fù)信號(hào)的常規(guī)示波器 或 MSO 測(cè)量則都是不可接受的。
圖 5. 基于樣本的碼型觸發(fā)產(chǎn)生了 4ns 的觸發(fā)抖動(dòng)(使用了 MSO 選件的LeCroy WaveRunner)
圖 5 是帶有混合信號(hào)選件,從而能根據(jù)取樣數(shù)據(jù)產(chǎn)生觸發(fā)事件的 示波器例子。圖 6 是 Keysight MSO 的例子,它用模擬硬件比較 器實(shí)現(xiàn)所有模擬和數(shù)字輸入信號(hào)的觸發(fā)。
圖 6. Keysight MSO 中的實(shí)時(shí)比較器硬件碼型觸發(fā)產(chǎn)生極低的觸發(fā)抖動(dòng)
在這一混合信號(hào)測(cè)量實(shí)例中,各示波器都設(shè)置為在 MCU 數(shù)字輸 出端口的特定 8bit 碼型條件與數(shù)字輸入通道 D4(A4)上升沿同 步時(shí)觸發(fā)。為測(cè)量 D4(A4)信號(hào)的信號(hào)完整性,把示波器的一 個(gè)模擬通道設(shè)置為對(duì)這一同樣的數(shù)字信號(hào)作“雙倍檢測(cè)”。如您 在圖 5 中所見(jiàn),示波器依據(jù)取樣數(shù)據(jù)的數(shù)字觸發(fā)產(chǎn)生了近似為 4ns 的峰峰觸發(fā)抖動(dòng);這是因?yàn)槠渥畲髷?shù)字 / 邏輯通道采樣率只 有 500 MSa/s(不確定度為 ±1 個(gè)取樣周期)。注意:在使用示 波器的無(wú)限余輝顯示模式時(shí),重復(fù)模擬跡線(中間的綠色跡線) 中有個(gè) 4 ns 的峰峰“拖影”。
圖 6 是使用 Keysight 混合信號(hào)示波器MSO 執(zhí)行與上例相同的重復(fù)觸發(fā)測(cè)量,它 采用實(shí)時(shí)模擬比較器硬件技術(shù)產(chǎn)生觸發(fā)事件,而非基于樣本的觸 發(fā)。在把示波器設(shè)置為 5 ns/div 時(shí),我們就能用該示波器的無(wú)限 余輝顯示模式觀察非常穩(wěn)定的模擬跡線,即使觸發(fā)僅僅跨示波器 的數(shù)字和邏輯通道輸入。在使用示波器的一個(gè)模擬輸入通道時(shí), 就能對(duì)重復(fù)輸入信號(hào)進(jìn)行更為精確的信號(hào)完整性測(cè)量。
在為您的混合信號(hào)嵌入式應(yīng)用評(píng)估各種 MSO 混合信號(hào)測(cè)量解決 方案時(shí),最后要考慮的一件事情是示波器是否能在串行 I/O,例 如 I2 C 和 SPI 的特定地址和數(shù)據(jù)傳輸上觸發(fā)。串行 I/O 已在今天 的嵌入式設(shè)計(jì)中被普遍采用。我們?cè)诒疚牡南乱徊糠謱⒔o出一個(gè) 例子,它要求根據(jù)混合信號(hào)嵌入式設(shè)計(jì)中的串行輸入命令,把串 行觸發(fā)與示波器對(duì)特定模擬輸出“chirp”信號(hào)的采集相同步。
啟用和調(diào)試真實(shí)混合信號(hào)嵌入式設(shè)計(jì)
讓 我 們 現(xiàn) 在 來(lái) 看 看 由 美 國(guó) 加 利 福 尼 亞 州 奇 哥 市(Chico) Solutions Cubed 公司所設(shè)計(jì)的一種混合信號(hào)嵌入式產(chǎn)品的啟用 和調(diào)試過(guò)程。圖 7 是該產(chǎn)品的框圖。
該混合信號(hào)嵌入式產(chǎn)品的核心是 Microchip PIC18F452-/PT 微控 制器,它使用內(nèi)部的 16bit 指令集工作。由于這種特殊的 MCU 有內(nèi)部總線結(jié)構(gòu)和一個(gè)包括嵌入的模數(shù)轉(zhuǎn)換器(ADC),因此該 混合信號(hào)器件及相應(yīng)的外圍電路就成為用 MSO 設(shè)計(jì)和調(diào)試嵌入 式混合信號(hào)設(shè)計(jì)的極好例子。
這項(xiàng)設(shè)計(jì)的最終目標(biāo)是依據(jù)各種模擬、數(shù)字和串行 I/O 輸入條件, 產(chǎn)生各種長(zhǎng)度、形狀和幅度的模擬“chirp”輸出信號(hào)(“chirp” 是包括特定周期數(shù)的 RF 脈沖模擬輸出信號(hào),在航天國(guó)防和汽車 應(yīng)用中常遇到“chirp”信號(hào))。MCU 同時(shí)檢測(cè)如下三種輸入, 以確定輸出 chirp 信號(hào)的特性:
1. 用 MCU 上的一個(gè)并行數(shù)字 I/O 端口檢測(cè)用戶系統(tǒng)控制面板 的狀態(tài),從而確定所產(chǎn)生輸出 chirp 信號(hào)的形狀(正弦波、 三角波、方波)。
2. 通過(guò) MCU 上的一個(gè) ADC 輸入檢測(cè)加速度模擬輸入傳感器 的輸出電平,從而確定所產(chǎn)生輸出 chirp 信號(hào)的幅度。
3. 使用 MCU 上的專用 I2 C 串行 I/O 端口檢測(cè)串行 I2 C 通信鏈 路的狀態(tài),從而確定輸出 chirp 中產(chǎn)生的脈沖數(shù)。這一 I2 C 通信輸入信號(hào)從該嵌入式設(shè)計(jì)中另一智能子系統(tǒng)部件產(chǎn)生。
根據(jù)模擬、數(shù)字和串行這三個(gè)輸入狀態(tài),MCU 向外部 8bit DAC 連續(xù)輸出并行信號(hào),以生成各種幅度、形狀和長(zhǎng)度的模擬 chirp 信號(hào)。DAC 的未濾波階梯波輸出饋送至模擬低通濾波器,用以 平滑信號(hào)和降低噪聲。這一模擬濾波器也為該輸出信號(hào)引入預(yù)先 確定的相移量。最后,MCU 通過(guò)另一可用數(shù)字 I/O 端口產(chǎn)生并 行數(shù)字輸出,以驅(qū)動(dòng)提供系統(tǒng)狀態(tài)信息的 LCD 顯示。
圖 7. 依據(jù)模擬、數(shù)字和串行 I/O 產(chǎn)生模擬“chirp”輸出的混合信號(hào)嵌入式設(shè)計(jì)
在這項(xiàng)設(shè)計(jì)中,設(shè)計(jì) / 編程 MCU 的第一步是,為 MCU 的 I/O 配置適當(dāng)數(shù)量的模擬和數(shù)字 I/O 端口。嵌入式系統(tǒng)設(shè)計(jì)師要通盤 考慮 MicroChip 這種特殊微控制器中與數(shù)字 I/O 端口相配的模擬 I/O 數(shù),以及與模擬 I/O 端口相配的數(shù)字 I/O 數(shù)。
在嘗試編碼 MCU,以檢測(cè)各種輸入和產(chǎn)生規(guī)定的最終輸出信號(hào) 前,研制組決定首先開(kāi)發(fā)該嵌入式設(shè)計(jì)某一部分 / 某項(xiàng)功能的測(cè) 試代碼,在增加交互式的復(fù)雜性之前先驗(yàn)證它的正確工作和信 號(hào)完整性。所啟用和調(diào)試的第一部分電路 / 第一項(xiàng)功能是外部的 DAC 輸出和輸入,以及模擬濾波器。為驗(yàn)證該電路和內(nèi)部固件 的正確工作,我們最初把 MCU 編碼為產(chǎn)生固定幅度的連續(xù)和重 復(fù)的正弦波,而不考慮輸入控制 / 狀態(tài)信號(hào)條件。
圖 8. Keysight InfiniiVision 系列 MSO 捕獲 MCU 控制 DAC 的并行數(shù)字輸入和模擬輸出
圖 8 示出 Keysight InfiniiVision 系列 MSO的屏幕圖像,它捕獲 至外部 DAC(MCU 數(shù)字 I/O 端口輸出)的連續(xù)數(shù)字輸入,以及 DAC 的階梯波輸出和經(jīng)模擬濾波的輸出。由于這些特定信號(hào)是 電平相對(duì)低的輸出信號(hào),僅使用 8bit DAC(最大 256 電平)的 16 個(gè)電平,我們能容易地在示波器顯示上觀察該轉(zhuǎn)換器的階梯 波輸出特性(綠色跡線)。
把這一特定采集設(shè)置為當(dāng) DAC 輸出到達(dá)其最高輸出電平(屏幕 中央)時(shí)觸發(fā)。傳統(tǒng)示波器在這一特定點(diǎn)觸發(fā)是不可能的,因?yàn)?示波器觸發(fā)需要沿的跳變。為在輸出信號(hào)的這一點(diǎn)相位處觸發(fā), 我們依據(jù)與外部 DAC 最高輸出模擬電平相一致的數(shù)字輸入信號(hào), 建立簡(jiǎn)單的單電平碼型觸發(fā)條件。為在波形的這一精確點(diǎn)觸發(fā), 設(shè)計(jì)師送入并行二進(jìn)制碼型“1110 0110”。由于該 MSO 使用“時(shí) 間限定”碼型觸發(fā),示波器始終在規(guī)定碼型的開(kāi)始處觸發(fā),而絕 不會(huì)在不穩(wěn)定的跳變的條件處觸發(fā)。
圖 9. 使用模擬和數(shù)字碼型觸發(fā)的組合 , Keysight MSO 在 50% 渡越點(diǎn)觸發(fā)
圖 9 示出 MSO 把觸發(fā)精確設(shè)置在 DAC 50% 輸出電平點(diǎn)的觸發(fā) 條件,除了模擬觸發(fā)條件外,還使用在并行數(shù)字輸入信號(hào)上的碼 型觸發(fā)。如前所述,并非所有 MSO 混合信號(hào)測(cè)量解決方案都允 許在模擬和數(shù)字條件上組合的混合信號(hào)觸發(fā)。但由于在相同電平 (50% 上升電平和 50% 下降電平)上存在兩個(gè)模擬輸出條件, 要與上升或下降點(diǎn)的觸發(fā)保持一致性,所需要的將不僅僅是在 8bit 輸入碼型上的碼型觸發(fā)。通過(guò)另外限定在模擬通道 1上的“低 (0)”電平(頂端的黃色跡線),示波器就能使用模擬和數(shù)字 碼型觸發(fā)的組合,在所需要的相位上觸發(fā)。注意,模擬信號(hào)在高 于模擬觸發(fā)電平時(shí)被看作“高(1)”,在低于觸發(fā)電平時(shí)被看 作“低(0)”。
圖 9 中也示出對(duì)濾波輸出信號(hào)的自動(dòng)參數(shù)測(cè)量,包括相對(duì)未濾波 DAC 輸出的幅度、頻率和相移。
圖 10. 傳統(tǒng)示波器的沿觸發(fā)不能同步特定長(zhǎng)度的 chirp
在啟用和驗(yàn)證了外部 DAC 和模擬濾波電路的正確工作后,該設(shè) 計(jì)啟用過(guò)程的下一步是根據(jù)串行 I2 C 輸入產(chǎn)生規(guī)定的非重復(fù)正弦 波脈沖(chirp)數(shù)。圖 10 示出使用標(biāo)準(zhǔn)的示波器邊沿觸發(fā),所 得到的不同長(zhǎng)度 chirp 的重疊(無(wú)限余輝)。而傳統(tǒng)示波器的沿 觸發(fā)是不可能限定在規(guī)定長(zhǎng)度 chirp 上觸發(fā)的。
使用 I2 C 觸發(fā)能力,Keysight MSO 示波器就能在特定串行輸入條 件下同步它的采集,并指示 MCU 產(chǎn)生規(guī)定長(zhǎng)度(脈沖數(shù))的輸 出 chirp。
圖 11. 用 Keysight MSO 中的 I2C 觸發(fā)和解碼在 3 周期 chirp 上觸發(fā)
圖 11 描述了示波器使用在規(guī)定串行地址和數(shù)據(jù)內(nèi)容上的 I2 C 觸 發(fā),在 3 周期 chirp 上觸發(fā)的能力。數(shù)據(jù)通道 D14 和 D15 分別 定義為 I2 C 時(shí)鐘和數(shù)據(jù)輸入觸發(fā)信號(hào)。實(shí)際上我們能把 16 個(gè)數(shù) 字通道及 2 個(gè)或 4 個(gè)示波器通道中的任何通道定義為對(duì)這樣 2 個(gè)輸入信號(hào)的串行觸發(fā)。在監(jiān)測(cè)串行輸入和模擬輸出信號(hào)的同時(shí), D0-D7 設(shè)置為在“總線”疊加顯示中檢測(cè)外部 DAC 輸入(MCU 輸出)信號(hào)。
圖 12. I2C 信號(hào)可通過(guò)時(shí)間相關(guān)形式查看,也可以通過(guò)上半部分表格解碼的形式進(jìn)行查看。
圖 12 圖下半部示出了時(shí)間相關(guān) I2 C 串行解碼基線;而該圖上半 部分也用表格形式顯示了串行解碼。 雖然圖中沒(méi)有示出,但可以把示波器的其他模擬通道設(shè)置為同時(shí) 檢測(cè)和采集來(lái)自加速度傳感器的模擬輸入信號(hào),以確定輸出信號(hào) 的幅度。此外,未使用的 MSO 數(shù)字通道也可用于檢測(cè)和或進(jìn)一 步限定數(shù)控面板輸入和 / 或 LCD 輸出驅(qū)動(dòng)器信號(hào)上的觸發(fā)。
總結(jié)
混合信號(hào)示波器(MSO)是用于調(diào)試和驗(yàn)證今天許多 基于 MCU 和 DSP 混合信號(hào)設(shè)計(jì)正 常工作的新工具。MSO 在一臺(tái)一體化的儀器上提供模擬和數(shù)字波形的時(shí)間相關(guān)顯示,以 及所有模擬和數(shù)字通道的強(qiáng)大混合信號(hào)觸發(fā)能力,因此能讓設(shè)計(jì)師使用他們熟悉的、基于 示波器用戶界面和使用方式的工具,更快地調(diào)試混合信號(hào)嵌入式設(shè)計(jì)。 今天市場(chǎng)上有著各式各樣的 MSO 和綜合性的混合信號(hào)測(cè)量工具,在做出購(gòu)買決定前,一 定要仔細(xì)評(píng)估這些儀器的測(cè)量能力和可使用性。
您應(yīng)特別關(guān)注混合信號(hào)示波器MSO如下七項(xiàng)特性:
1. MSO 的工作方式要像熟悉的示波器——而不是像邏輯分析儀。
2. MSO 應(yīng)當(dāng)具備示波器的全部測(cè)量能力,同時(shí)不會(huì)犧牲其他特性,例如自動(dòng)定標(biāo),觸 發(fā)釋抑,無(wú)限余輝(適合模擬和數(shù)字通道)以及探頭 / 通道偏移校正等。
3. MSO 要像示波器那樣提供快的波形更新率,而不能像邏輯分析儀那樣提供慢的更新率。
4. MSO 數(shù)字 / 邏輯通道采集系統(tǒng)的性能(采樣率和探測(cè)帶寬)要與示波器的模擬采集 系統(tǒng)性能相適配。
5. MSO 要能在模擬和數(shù)字通道上同時(shí)觸發(fā)(混合信號(hào)觸發(fā)),具有精確的時(shí)間校準(zhǔn)功能。
6. MSO 要能根據(jù)最小限定時(shí)間在碼型上觸發(fā),從而避免在不穩(wěn)定的跳變的切換條件上 觸發(fā)。
7. MSO 要能提供基于實(shí)時(shí)模擬比較器技術(shù)的模擬和數(shù)字觸發(fā)——而非會(huì)在重復(fù)波形上 產(chǎn)生顯著觸發(fā)抖動(dòng)的基于波形樣本的觸發(fā)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 增強(qiáng)視覺(jué)傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問(wèn)題
- Honda(本田)與瑞薩簽署協(xié)議,共同開(kāi)發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問(wèn)題
- 當(dāng)過(guò)壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開(kāi)關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開(kāi)啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開(kāi)啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開(kāi)發(fā)工具
開(kāi)關(guān)
開(kāi)關(guān)電源
開(kāi)關(guān)電源電路
開(kāi)關(guān)二極管
開(kāi)關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器