高速和射頻電路有何差異?射頻能量采集的工作原理分析
發(fā)布時(shí)間:2017-06-19 責(zé)任編輯:susan
【導(dǎo)讀】什么是射頻電路?隨著頻率的升高,相應(yīng)的電磁波波長(zhǎng)變得可與分立電路元件的尺寸相比擬時(shí),電路上的導(dǎo)線、電阻、電容和電感這些元件的電響應(yīng)開(kāi)始偏移其理想頻率特性。一般將射頻定義在30 MHz~4 GHz頻段,比射頻高的頻率稱(chēng)為微波。
一個(gè)數(shù)字系統(tǒng)的時(shí)鐘頻率本身可能很高,已經(jīng)處于射頻范圍內(nèi),或者其時(shí)鐘頻率不夠高,但其諧波頻率卻落在射頻范圍內(nèi)。所以,一個(gè)高速系統(tǒng),因其信號(hào)存在高頻成分,電路上的元件呈現(xiàn)分布參數(shù)特性,互連系統(tǒng)表現(xiàn)出傳輸線效應(yīng)。所以,在設(shè)計(jì)高速電路時(shí),應(yīng)具備射頻微波知識(shí)是很有必要的。
但高速系統(tǒng)和射頻系統(tǒng)存在差別,主要表現(xiàn)在:
· 射頻系統(tǒng)一般處理模擬信號(hào),而高速系統(tǒng)是針對(duì)數(shù)字信號(hào)而言;
· 射頻系統(tǒng)一股是窄帶的,而高速系統(tǒng)覆蓋從直流開(kāi)始的很寬頻帶;
· 射頻信號(hào)靠信號(hào)的幅度和相位傳播信息,一般從頻域進(jìn)行分析;而高速信號(hào)靠波形傳播信息,一般從時(shí)域進(jìn)行分析
射頻能量采集的工作原理分析
能量采集是實(shí)現(xiàn)低功耗電子器件(如無(wú)線傳感器)長(zhǎng)期免維護(hù)工作的一項(xiàng)關(guān)鍵技術(shù)。通過(guò)捕獲環(huán)境中的多余能量(如照明、溫差、振動(dòng)和無(wú)線電波(射頻能量)),完全可以讓低功耗電子器件正常工作。在這些微功率能源中,來(lái)自射頻發(fā)射器的能量具有獨(dú)特的優(yōu)勢(shì),包括隨距離變化可預(yù)測(cè)和一致的功率,從而允許能量采集器遠(yuǎn)離能源的束縛。
環(huán)境射頻能量如今可以從全球數(shù)十億個(gè)無(wú)線發(fā)射器獲得,包括移動(dòng)電話、手持無(wú)線電設(shè)備、移動(dòng)基站以及電視/無(wú)線廣播臺(tái)等。捕獲這類(lèi)能量的能力有助于創(chuàng)建新的無(wú)電池設(shè)備,并允許電池供電設(shè)備通過(guò)無(wú)線方式實(shí)現(xiàn)點(diǎn)滴式充電。除了環(huán)境射頻能量外,還有一種方式是使用專(zhuān)門(mén)的發(fā)射器發(fā)送功率,這能使無(wú)線電源系統(tǒng)提供更高的性能。在許多應(yīng)用中這是首選的解決方案,但成本比較高。政府法規(guī)一般將使用免許可頻帶的無(wú)線電設(shè)備輸出功率限制為4W有效全向輻射功率(EIRP),就像射頻標(biāo)簽(RFID)詢問(wèn)器那樣。作為對(duì)比,基于模擬技術(shù)的早期移動(dòng)電話的最大發(fā)射功率為3.6W,而Powercast公司的新款TX91501發(fā)射器功率為3W。
環(huán)境射頻(RF)能量采集有個(gè)明顯吸引人的地方,即收集的是完全“免費(fèi)的”能量。雖然具有這種能力的設(shè)備在充電時(shí)可以移動(dòng),但許多射頻能量采集方案要求使用指向已知能源(如移動(dòng)基站)的定向天線。在移動(dòng)電話領(lǐng)域的應(yīng)用前景是能夠收集足夠多的環(huán)境射頻能量來(lái)與移動(dòng)手機(jī)的待機(jī)功耗相匹配。如果可能的話,那么移動(dòng)電話將具有連續(xù)的待機(jī)能力,而不僅僅是幾天時(shí)間。雖然這種特殊應(yīng)用目前還不實(shí)用,但許多系統(tǒng)級(jí)要素的匯集正在推動(dòng)適合其它應(yīng)用的環(huán)境射頻能量采集方案。這些要素包括低功耗元件不斷普及、有更多的發(fā)射器作為能源、無(wú)源射頻采集器的射頻靈敏度提升以及低等效串聯(lián)電阻(ESR)雙層電容(也稱(chēng)為超級(jí)電容)的推廣。
諸如微控制器等低功耗電子元件的制造商正在不遺余力地降低元件功耗,同時(shí)提高性能。來(lái)自這些公司的數(shù)據(jù)手冊(cè)和其它行銷(xiāo)廣告都在有意宣傳幾個(gè)納安級(jí)的待機(jī)電流,以及能夠從電壓不到1V的電池進(jìn)行升壓的片上DC/DC轉(zhuǎn)換器。其它元件(如傳感器等)被越來(lái)越多地設(shè)計(jì)成有助于降低總體系統(tǒng)功耗的無(wú)源器件。這對(duì)無(wú)電池設(shè)備來(lái)說(shuō)尤其重要。通過(guò)充分的實(shí)時(shí)能量采集,無(wú)電池設(shè)備可以連續(xù)運(yùn)轉(zhuǎn),但如果能量太低,就必須先儲(chǔ)存起來(lái),直到足夠維持一次工作周期。隨著元件功率水平的降低,由能量采集技術(shù)供電的系統(tǒng)可以工作得更加頻繁。
無(wú)線電發(fā)射器的數(shù)量,特別是用于移動(dòng)基站和手機(jī)的發(fā)射器數(shù)量正在不斷增加。據(jù)ABI Research公司和iSupply公司估計(jì),移動(dòng)手機(jī)用戶數(shù)量近期已經(jīng)超過(guò)50億,ITU估計(jì)其中有10億多是移動(dòng)寬帶用戶。此外還有眾多的Wi-Fi路由器以及諸如筆記本電腦等無(wú)線終端設(shè)備。在一些城市環(huán)境中,有可能檢測(cè)到數(shù)百個(gè)Wi-Fi接入點(diǎn)。在短距離范圍內(nèi),比如同一房間內(nèi),可以從發(fā)射功率為50mW至100mW的典型Wi-Fi路由器中收集到微小的能量。在更長(zhǎng)距離的情況下,需要使用具有更高增益的更長(zhǎng)天線才能真正收集到來(lái)自移動(dòng)基站和無(wú)線廣播塔的射頻能量。2005年,Powercast公司在距一個(gè)小型5kW AM廣播電臺(tái)1.5英里(大約2.4公里)的地方成功演示了環(huán)境能量采集的實(shí)現(xiàn)。
無(wú)源射頻接收器或射頻能量采集器件(如Powercast公司的P2110 Powerharvester接收器)工作時(shí)的射頻輸入電平要大于等于-11dBm。提高射頻靈敏度允許在距射頻能量源更遠(yuǎn)的距離范圍內(nèi)實(shí)現(xiàn)射頻至直流(RF/DC)電源轉(zhuǎn)換,但隨著距離的增加,可用功率將降低,充電時(shí)間將延長(zhǎng)。低漏電流的能量存儲(chǔ)技術(shù)非常重要,特別是在輸入功率非常低時(shí),這樣才能最大限度地減小采集到能量的損失,使能量采集過(guò)程盡可能高效。
射頻能量采集器的一個(gè)重要性能是在寬范圍的條件下正常工作的能力,包括輸入功率和輸出負(fù)載電阻的變化。例如,Powercast的射頻能量采集元件無(wú)需額外的耗能電路來(lái)實(shí)現(xiàn)最大功率點(diǎn)跟蹤(MPPT),而這是將太陽(yáng)能轉(zhuǎn)換為電能等其它能量采集技術(shù)不可或缺的。Powercast元件可以在很寬的工作范圍內(nèi)保持較高的射頻至直流轉(zhuǎn)換效率,因而具有跨應(yīng)用和OEM設(shè)備的擴(kuò)展性。能夠適應(yīng)多頻帶或?qū)拵ьl率范圍并且支持自動(dòng)頻率調(diào)諧的射頻能量采集電路可以進(jìn)一步提高輸出電能,也因此能擴(kuò)展移動(dòng)性,簡(jiǎn)化安裝。Powercast元件采用標(biāo)準(zhǔn)50Ω輸入阻抗設(shè)計(jì),不僅有利于縮短設(shè)計(jì)時(shí)間,而且支持使用現(xiàn)成的天線。
圖1顯示了Powercast P2110 Powerharvester接收器在多個(gè)頻段的性能,包括中心頻率為915MHz的工業(yè)-科學(xué)-醫(yī)療(ISM)頻段。
圖1:圖中曲線顯示了P2110 Powerharvester模塊在三種ISM頻段工作時(shí)射頻輸入功率與轉(zhuǎn)換效率的關(guān)系。
存儲(chǔ)利用能量采集技術(shù)捕獲到的能量有幾種方式,包括傳統(tǒng)的可再充電電池、新興的薄膜電池和電容。在過(guò)去20年中,鋰(鋰離子)電池、鎳氫電池(NiMH)和薄膜電池都有了長(zhǎng)足的發(fā)展。隨著能量密度的提高和封裝尺寸的縮小,這些產(chǎn)品已被成功地用于長(zhǎng)時(shí)間地維持微功率傳感器設(shè)備運(yùn)轉(zhuǎn)。這些產(chǎn)品的缺點(diǎn)是,就像一次性電池那樣,可再充電電池也有有限的壽命和充電次數(shù),最終必須要更換。這正是許多行業(yè)需要考慮和研究能量采集與替代性能量存儲(chǔ)方案(如超級(jí)電容)的原因。
傳統(tǒng)的超級(jí)電容或眾所周知的電化學(xué)雙層電容器(EDLC)在2.5V或5V時(shí)具有數(shù)百歐姆的ESR值,這種電容在能量?jī)?chǔ)備應(yīng)用中已經(jīng)有30多年的使用歷史了,包括用作各種消費(fèi)設(shè)備(如錄像機(jī)、收音機(jī)和其它電子系統(tǒng))時(shí)鐘的后備能量。這些時(shí)鐘在低電壓下工作時(shí)消耗電流不到10μA,在許多電路的實(shí)時(shí)時(shí)鐘(RTC)應(yīng)用中也有使用。這些低功耗應(yīng)用發(fā)現(xiàn),EDLC器件是必須被頻繁更換的電池與在實(shí)用封裝(如鈕扣電池)下無(wú)法提供足夠電荷存儲(chǔ)的靜電/電解電容之間的極好折衷產(chǎn)品。
針對(duì)客戶的要求,在過(guò)去10年中業(yè)界開(kāi)發(fā)出了低ESR的EDLC電容。這種電容能夠在高脈沖功率應(yīng)用中的接近5V電壓條件下提供數(shù)安的電流。這種EDLC電容體積小,ESR值低(2OmΩ至50mΩ),容量大(6.8mF至1F),額定工作電壓范圍是2.5V至20V。這些電容可以提供許多應(yīng)用要求的數(shù)安培的高電流脈沖,比如無(wú)線條碼掃描機(jī)、智能抄表系統(tǒng)以及許多類(lèi)型的GSM/GPRS蜂窩應(yīng)用。這些低ESR元件現(xiàn)在還設(shè)計(jì)用于微功率能量采集系統(tǒng)等新興應(yīng)用,因?yàn)樗鼈兙哂袃煞N獨(dú)特性能:低漏電流和低ESR?,F(xiàn)在這些電容已經(jīng)代替其它電容或其它小型電池成為這類(lèi)應(yīng)用的首選。例如AVX公司的BestCap元件就具有低ESR、低漏電流和高電流脈沖特性,非常適合環(huán)境能量采集使用。它們不僅具有很小的ESR值,而且具有不到幾個(gè)微安的低漏電流。
圖2是EDLC電容的橫截面圖。從圖中可以看到兩個(gè)由電解液包圍著的納米顆?;钚蕴紝?,電解液中間則有一個(gè)“隔離”層。這兩個(gè)碳層與集電極相接觸,并由集電極將電流輸送到外部。這兩個(gè)碳層由兩個(gè)串聯(lián)電容組成,因此命名為雙層電容或DLC。由于電容內(nèi)的電荷載體實(shí)際上處于離子態(tài),因此使用了術(shù)語(yǔ)電化學(xué)DLC(或EDLC)。這張圖也顯示了簡(jiǎn)單的原理,其中電荷主要集中在集電極-碳接口。電容(C)直接正比于有效面積(A),并反比于這些電荷(或C a A/d)之間的隔離距離(d)。雙層電容的正負(fù)電荷之間的間距在納米范圍,這正是EDLC電容容量如此大的原因(因?yàn)檫@個(gè)間距要比靜電電容的電荷間距小好幾個(gè)數(shù)量級(jí))。
圖2:電化學(xué)雙層電容(EDLC)的橫截面圖。
基于含水電解液的BestCap器件使用質(zhì)子(一種最小的離子)作為電荷載體。與使用較大離子的其它超級(jí)電容技術(shù)相比,這種電容設(shè)計(jì)方法可實(shí)現(xiàn)每單位有效面積更低的ESR。由于其自身設(shè)計(jì)實(shí)現(xiàn)了更小的漏電流,BestCap架構(gòu)也具有更高的可靠性。這種技術(shù)還可以在相同封裝內(nèi)構(gòu)建不同的電容,最終能夠在同一封裝尺寸下靈活地實(shí)現(xiàn)不同的額定電壓。這種封裝內(nèi)部不需要外部平衡。
環(huán)境中的無(wú)線電波數(shù)量非常龐大,特別是在人口稠密的城市內(nèi),而且頻率范圍越來(lái)越大,功率水平越來(lái)越高。如果這種自由流動(dòng)的射頻能量能夠被有效和高效地采集,那么這些無(wú)線電波就能夠成為一種獨(dú)特且廣泛可用的微能源。數(shù)量不斷增加的無(wú)線發(fā)射器將導(dǎo)致射頻功率密度和可用性日漸提高。專(zhuān)用功率發(fā)射器將進(jìn)一步使可實(shí)現(xiàn)、可預(yù)測(cè)的無(wú)線電源解決方案成為可能。隨著電子元件功耗的持續(xù)降低、無(wú)源射頻接收器靈敏度的提高以及低ESR雙層超級(jí)電容性能的改進(jìn),通過(guò)射頻能量采集方式實(shí)現(xiàn)無(wú)繩充電的實(shí)用性應(yīng)用將不斷推陳出新。
特別推薦
- 增強(qiáng)視覺(jué)傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問(wèn)題
- Honda(本田)與瑞薩簽署協(xié)議,共同開(kāi)發(fā)用于軟件定義汽車(chē)的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問(wèn)題
- 當(dāng)過(guò)壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開(kāi)關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開(kāi)啟!
- 汽車(chē)智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開(kāi)啟!
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開(kāi)發(fā)工具
開(kāi)關(guān)
開(kāi)關(guān)電源
開(kāi)關(guān)電源電路
開(kāi)關(guān)二極管
開(kāi)關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器