如何采用門控時(shí)鐘來設(shè)計(jì)低功耗時(shí)序電路?
發(fā)布時(shí)間:2014-06-20 來源:Bhanu Khera,Harsh Garg 責(zé)任編輯:sherryyu
【導(dǎo)讀】在設(shè)計(jì)階段,由于架構(gòu)師對電路的功耗要求越來越嚴(yán)格,并且倍增系數(shù)越來越大,因此對多路復(fù)用級聯(lián)時(shí)鐘分頻器的需求也隨之加大。本文分享給大家的是一種采用門控時(shí)鐘來設(shè)計(jì)低功耗時(shí)序電路,與傳統(tǒng)電路相比,可支持不同的輸出頻率,同時(shí)消耗更低的功耗。
在傳統(tǒng)設(shè)計(jì)中,所有計(jì)算機(jī)運(yùn)算(算法、邏輯和存儲進(jìn)程)都參考時(shí)鐘同步執(zhí)行,時(shí)鐘增加了設(shè)計(jì)中的時(shí)序電路數(shù)量。在這個(gè)電池供電設(shè)備大行其道的移動(dòng)時(shí)代,為了節(jié)省每一毫瓦(mW)的功耗,廠商間展開了殘酷的競爭,因此將電路分成多個(gè)電源域并根據(jù)要求關(guān)閉它們,并且在設(shè)計(jì)每個(gè)時(shí)序電路的同時(shí)節(jié)省功耗,這兩點(diǎn)至關(guān)重要。時(shí)序電路(如計(jì)數(shù)器和寄存器)在現(xiàn)代設(shè)計(jì)中無處不在。本文以約翰遜計(jì)數(shù)器為例介紹了如何采用有效門控時(shí)鐘來設(shè)計(jì)高能效的時(shí)序電路。
約翰遜計(jì)數(shù)器系統(tǒng),可同步提供多種特殊類型的數(shù)據(jù)序列,這對于大多數(shù)重要應(yīng)用(如D/A轉(zhuǎn)換器、FSM和時(shí)鐘分頻器)來說至關(guān)重要。為支持不同頻率(從MHz 到 GHz)的模塊,越來越多的IP集成到片上系統(tǒng),因此,設(shè)計(jì)中在不同層級實(shí)施了許多可支持多個(gè)分頻因子的時(shí)鐘分頻器。本文中,我們介紹了一款節(jié)能設(shè)計(jì),即用帶有門控時(shí)鐘的多級可編程約翰遜計(jì)數(shù)器系統(tǒng)來取代多個(gè)時(shí)鐘分頻器,該計(jì)數(shù)器可提供8至任何偶數(shù)值(在本文中為38)的時(shí)鐘分頻因子。下面,我們將探討實(shí)施細(xì)節(jié)和該技術(shù)的優(yōu)劣。
典型時(shí)序電路
圖1給出的是一款傳統(tǒng)4位上升沿約翰遜計(jì)數(shù)器。約翰遜計(jì)數(shù)器只不過是修改過的移位寄存器,其最后一個(gè)D觸發(fā)器的反相輸出作為第一個(gè)D觸發(fā)器的輸入。所有其他觸發(fā)器將接收上一個(gè)觸發(fā)器所提供的輸出。
圖1:傳統(tǒng)約翰遜計(jì)數(shù)器。
如表1所示,在所有的縱列中,4個(gè)連續(xù)的“0”后面都跟隨著4個(gè)連續(xù)的“1”,但所有縱列都位于不同的階段。約翰遜計(jì)數(shù)器可同步創(chuàng)建一個(gè)特定的數(shù)據(jù)模式。該數(shù)據(jù)模式在建模時(shí)非常有用,因?yàn)樗梢允褂萌魏纬轭^就可以產(chǎn)生一個(gè)有不同階段的時(shí)鐘樣式的模式。此外,從表中可以推導(dǎo)出,約翰遜計(jì)數(shù)器只使用了N個(gè)觸發(fā)器提供2N個(gè)狀態(tài),因此,與標(biāo)準(zhǔn)環(huán)形計(jì)數(shù)器相比,約翰遜計(jì)數(shù)器僅需要一半數(shù)量的觸發(fā)器便可實(shí)現(xiàn)同樣的MOD。
表1:約翰遜計(jì)數(shù)器的狀態(tài)表。
[page]
典型時(shí)序電路的缺陷
如圖1所示,這種電路最大的缺點(diǎn)是不可配置,因此,不能改變時(shí)鐘分頻因子。一個(gè)N觸發(fā)器設(shè)計(jì)只能產(chǎn)生2N個(gè)周期的時(shí)鐘。需要預(yù)先將固定數(shù)量的觸發(fā)器加入到設(shè)計(jì)中,才能產(chǎn)生固定周期的時(shí)鐘。這大大阻礙了特定時(shí)鐘的設(shè)計(jì),而且多個(gè)這樣的設(shè)計(jì),需要多種分頻因子來進(jìn)行分頻。
另外,該設(shè)計(jì)非常耗能,并且也沒有機(jī)制可通過高效門控時(shí)鐘來節(jié)省動(dòng)態(tài)功耗。如表1所示,Q3只能在時(shí)鐘脈沖2和時(shí)鐘脈沖6中改變其輸出,對于所有其他時(shí)鐘而言,觸發(fā)器一次又一次地存儲了相同的數(shù)據(jù)。這導(dǎo)致在時(shí)鐘周期內(nèi)產(chǎn)生了不必要的功耗,而采用適合的門控時(shí)鐘可解決該問題。
通過調(diào)整結(jié)構(gòu)和門控時(shí)鐘來增強(qiáng)電路
任何時(shí)序電路都可通過調(diào)整結(jié)構(gòu)和有效的門控時(shí)鐘加以增強(qiáng)。圖1中所示的約翰遜計(jì)數(shù)器在圖2種得到了增強(qiáng),可以靈活地支持多種分頻因子,產(chǎn)生可變化的輸出頻率。
為了使其可編程,觸發(fā)器的多個(gè)延遲階段都加入了所需的組合邏輯,以根據(jù)所需分頻因子進(jìn)行選擇。
圖2顯示的就是一款低功耗可編程約翰遜計(jì)數(shù)器。該電路包括級聯(lián)延遲階段B1、B2、B3、B4、逆變器I、參考時(shí)鐘輸入CLK、門控時(shí)鐘邏輯CGL,以及控制邏輯(分頻器和減法器),可根據(jù)要求選擇觸發(fā)器組合。
圖2:低功耗多級可編程約翰遜計(jì)數(shù)器。
在圖2所示的修改后的約翰遜計(jì)數(shù)器電路中,我們采用了19個(gè)D觸發(fā)器,這些觸發(fā)器提供8至38以內(nèi)的偶數(shù)值的分頻因子??赏ㄟ^添加額外的觸發(fā)器和多路復(fù)用器,使所需分頻因子進(jìn)一步增加至任何偶數(shù)值。多個(gè)路徑可將觸發(fā)器 “a、j、o和r” 的輸出連接至相應(yīng)的多路復(fù)用器輸入,例如,分流路徑將觸發(fā)器 “a”的輸出連接至第一個(gè)多路復(fù)用器的第一個(gè)輸入,延遲路徑則將觸發(fā)器“a”的輸出[經(jīng)過一組觸發(fā)器(b、c、d、e、f、g、h、i)]連接至第一個(gè)多路復(fù)用器的第二個(gè)輸入。這種實(shí)施方案允許選擇多路復(fù)用器輸出,使電路具備所需的可配置性,可以支持多個(gè)分頻因子。
如圖3所示,為了節(jié)省功耗,控制電路輸出饋入CGL中,以根據(jù)所需分頻因子啟用或禁用“延遲路徑觸發(fā)器”的時(shí)鐘。當(dāng)分頻因子為2N時(shí),需要N個(gè)觸發(fā)器提供所需的時(shí)鐘頻率。為了促進(jìn)多路復(fù)用器輸入的選擇,并為時(shí)鐘門控邏輯啟用所選的輸入,我們添加了一個(gè)主要由減法器構(gòu)成的控制邏輯。該減法器可根據(jù)用戶所提供的分頻因子,將N-4作為輸出提供,并且減法器(sel[3:0])的二進(jìn)制輸出位數(shù)每個(gè)都可作為4個(gè)多路復(fù)用器(1st、2nd、3rd、4th)的相應(yīng)選擇線路,并使CGL以高效的方式對觸發(fā)器的時(shí)鐘進(jìn)行門控。
這有效地實(shí)現(xiàn)了設(shè)計(jì)的可編程化,并降低了計(jì)數(shù)器的動(dòng)態(tài)功耗。
圖3:電路運(yùn)算說明圖。
電路運(yùn)算
以分頻因子為10(即2N=10)的電路為例。由于傳統(tǒng)約翰遜計(jì)數(shù)器在分頻因子為2N時(shí)需要N個(gè)觸發(fā)器,要使分頻因子為10,電路中需要2N/2 = 10/2 = 5個(gè)觸發(fā)器。分頻器電路的輸出是2N/2 = 5,這時(shí)減法器的輸出則為(5-4) = 1,再饋入多路復(fù)用器的選擇線路,其二進(jìn)制表示為0001。這個(gè)4位sel[3:0]=0001信號極為重要,因?yàn)樗粌H控制著門控時(shí)鐘邏輯,還在分流和延遲路徑中做出選擇。
圖4:分頻因子為10的電路運(yùn)算。
在這種情況下,只有Sel[0]會變?yōu)?并啟用s觸發(fā)器的時(shí)鐘,并且同樣地,sel[3]、sel[2]、sel[1]將相應(yīng)禁用 (b、c、d、e、f、g、h、i)、(k, l, m, n)、(p、q)觸發(fā)器的時(shí)鐘,見圖4中突顯部分。另外需要注意的是,“a, j, o 和r”觸發(fā)器將始終啟用。這樣一來,不僅啟用了所需的觸發(fā)器,并且該電路可在第4個(gè)多路復(fù)用器的輸出上獲得所需的輸出時(shí)鐘。因此,在這個(gè)示例中,共有5個(gè)觸發(fā)器接收到時(shí)鐘,其他觸發(fā)器的時(shí)鐘將自動(dòng)被禁用。
我們對上述計(jì)數(shù)器進(jìn)行了模擬,其結(jié)果以RTL波形的形式呈現(xiàn)在圖5中。根據(jù)圖5可以推出:修改后的計(jì)數(shù)器采用sel[3:0]作為4’h0001,將一個(gè)100 MHz的時(shí)鐘進(jìn)行分頻,提供10 MHz的輸出。
圖5:分頻因子為10的波形。
推薦的電路可實(shí)現(xiàn)各種組合,表2列出了多路復(fù)用器所選擇的輸入。
表2:不同分頻因子的多路復(fù)用器和CGIC的選擇邏輯。
推薦方法的優(yōu)勢
本文所介紹的約翰遜計(jì)數(shù)器可根據(jù)分頻因子(范圍為8至38)進(jìn)行編程,按提供給計(jì)數(shù)器組合邏輯的輸入所配置的提供一系列輸出頻率。
即使此計(jì)數(shù)器中配備了額外的硬件來實(shí)現(xiàn)可編程性,但是該電路的功耗通過一個(gè)邏輯提供的有效門控時(shí)鐘進(jìn)行控制,該邏輯與在選擇階段挑選多路復(fù)用器時(shí)所采用的邏輯相同,并啟用門控時(shí)鐘單元。
因此,將門控時(shí)鐘添加到設(shè)計(jì)內(nèi)以后,任何從移位寄存器傳送至計(jì)數(shù)器的時(shí)序邏輯都可以變得更加高效,并且片上系統(tǒng)的一系列此類電路綜合起來可以節(jié)省功耗并延長設(shè)備電池壽命。
總結(jié)
在設(shè)計(jì)階段,由于架構(gòu)師對電路的功耗要求越來越嚴(yán)格,并且倍增系數(shù)越來越大,因此對多路復(fù)用級聯(lián)時(shí)鐘分頻器的需求也隨之加大,但這種分頻器會使電路消耗更多的功耗,并且占用更大的芯片面積。結(jié)構(gòu)調(diào)整后的設(shè)計(jì)卻提供了一個(gè)更加輕松的解決方案,與傳統(tǒng)電路相比,重組后的電路可支持不同的輸出頻率,同時(shí)消耗更低的功耗。該解決方案還可輕松應(yīng)用至各種其他設(shè)計(jì)中,使其他設(shè)計(jì)變得更加節(jié)能。
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器