【導讀】目前已有一些LTE社區(qū)開始采用八天線技術以實現更高的性能,而這些先進的技術將使測試方法的選擇變得更加重要,對測試系統(tǒng)的要求也越來越具挑戰(zhàn)性且越來越苛刻,因此,我們需要了解LTE所使用的天線技術,從而實現可靠和高效測試…
目前,TD-LTE、FDD-LTE和LTE-Advanced(LTE-A)無線技術使用了幾種不同的多種輸入多路輸出(MIMO)技術。鑒于MIMO系統(tǒng)的復雜性正在日益提高,因此相關的測試方法也將更具挑戰(zhàn)性。例如,當前已部署的MIMO技術利用兩具天線來改善信道性能。還有一些LTE社區(qū)已率先開始采用八天線技術來實現更高的性能。這些先進的技術將使測試方法的選擇變得更為至關重要。
要想找到正確的方法,必須要充分理解每一版本的LTE所使用的天線技術。例如,波束是TD-LTE的一項關鍵特性。盡管它在某些場景下是一種極具吸引力的傳輸方案(例如開放的鄉(xiāng)村地區(qū)或熱點覆蓋區(qū)),但它并不總是最佳的方法。波束賦型可以提高蜂窩中接收信號的信噪比(SNR),從而擴大覆蓋范圍或改善蜂窩邊緣區(qū)域的用戶體驗。它還可以從空間上對信號的范圍加以限制,從而將干擾降至最低。在信噪比充足的地區(qū),波束賦型并不能使數據速率得到提高。
通過在空間上復用并發(fā)數據流,MIMO可以在低關聯、高信噪比信道條件下提高數據吞吐量。為了優(yōu)化MIMO數據速率,TD-LTE使用包含八具天線的組件。在圖1中,有四具天線(以藍色顯示)在物理上形成了角度相同的極化,而另外四具天線(以綠色顯示)則與前面的四具天線形成了物理正交的關系。
圖1:此圖顯示的是一個TD-LTE eNodeB天線配置,可以用于優(yōu)化MIMO數據速率
通過形成一個指向具體用戶設備(UE)的波束,這兩組四天線組件可以增強信噪比。兩個正交極化的波束能夠有效地模仿出兩個存在較低關聯天線,即使實際的空間關聯較高也沒問題。因此,這種天線配置能夠擴大覆蓋范圍,使更廣泛的高數據速率傳輸成為可能(圖2)。
圖2:一個形成正交極化波束的8×2波束賦型系統(tǒng)
除TD-LTE外,八天線技術還可用于FDD-LTE。網絡運營商可利用該天線配置來增強上行鏈路的接收效果,解決低功率用戶設備鏈路預算限制的問題。3GPP的RAN1工作組正在積極討論八天線技術在LTE-A的實用化部署。
在傳統(tǒng)的性能測試中,天線模式,即一個天線陣列在每個方向上的信號增益,通常都會被忽視。這部分是因為,在傳統(tǒng)的單路輸入單路輸出(SISO)系統(tǒng)進行的測試中,人們往往會假設天線都是全向的。但對于多數基站來說,事實并非如此。信號強度的方向性在MIMO空間信道中發(fā)揮著重要的作用,而在波束賦型應用中的作用則更為關鍵。因此,在測試八天線系統(tǒng)時,認真考慮天線的模式將是至關重要的。
為了發(fā)揮八天線陣列的全部優(yōu)勢,LTE和LTE-A系統(tǒng)會使用雙層波束賦型,以及干擾抑制和合并(IRC)等接收機技術。使用IRC技術時,eNodeB基礎接收機站(BTS)使用從多種用戶設備收集到信息(通常是各噪音源之間的交叉共變),從而以智能化的方式對噪音加以抑制。這類方案會增加MIMO信道仿真的復雜性。此外,它們還會帶來如下的測試挑戰(zhàn):
信道的數量:要想對一個波束賦型系統(tǒng)進行測試,必須建立起MIMO信道。在TD-LTE中,上行和下行鏈路在特性上是相同的。在FD-LTE中,信道的關聯程度可能較高或較低–這要依頻率間隔或所觀察到的(Rayleigh衰減、陰影衰減等)衰減水平等因素的而定。在實驗室中為測試用途而創(chuàng)建的任何RF信道必須將這些細節(jié)考慮在內。
對于八天線系統(tǒng)來說,此類測試很明顯將涉及大量的RF信道。例如,一個8x2雙向MIMO信道就需要16個RF信道。在許多實驗室中,空間RF都是一個重要的因素。因此,提供這一能力可以大幅度增強能力,同時又不會導致測試平臺的規(guī)模出現不成比例的異常增長。
此外,要想實現信道互易性,就要求對8x2雙向MIMO測試系統(tǒng)進行相位校準,只有校準后才能對系統(tǒng)的波束賦型能力進行測試。有效的相位調整和信道校準都是實現可靠和高效測試的關鍵因素。信道數量的這種增加還要求更RF硬件更密集地集成到系統(tǒng)中。如果不能有效集成,在有大量外側分離器、合并器和循環(huán)器等設備的條件下,精確和可靠地實現RF信道幾乎會成為一項不可能完成的任務。
先進的信道建模:由于八天線LTE系統(tǒng)使用了先進的天線技術,測試中所用的建模信道必須重現這些技術中所用信道的實際物理特性。如果在仿真結果中不能將所有的細節(jié)都囊括在內,則有可能建立不正確的基準,從而無法對真正的系統(tǒng)性能進行評價。例如,極化會影響用戶設備接收到的信號功率。與無極化的案例相比,接收到的信號功率明顯較低。這種由于極化直接造成的損失取決于用戶設備與eNodeB天線陣列之間的相對方向。
天線模式也對信號強度有直接的影響。接收信號的功率會隨信號行進方向的不同而有所變化。由于每種可能的場景都有一系列獨特的離去角(AoD),因此功率也會隨方向的不同而有所變化。當天線模式和極化結合在一起時,這個問題會變得更難應付。下表顯示的雙信道場景下不同組合造成的功率損失。表中的“X”代表一個交叉極化天線對,而豎線(||)代表的是無極化的天線組件。
表:極化和天線模式對接收功率產生的影響
動態(tài)場景:對于一種波束賦型系統(tǒng)而言,僅在靜態(tài)(非移動)條件下進行測試是遠遠不夠的。波束賦型基本上包含兩個步驟:估計用戶設備的方向,以及將波束指向該方向。當用戶設備移動時,它(相對于eNodeB天線陣列)的方向也會改變。在理解系統(tǒng)性能的過程中,這種現象會帶來兩個基本的問題:系統(tǒng)跟蹤用戶設備移動的速度有多快,以及系統(tǒng)的性能會因此受到怎樣的影響?為了解答這些問題,我們必須使用能夠代表實際運行條件的動態(tài)場景來對波束賦型系統(tǒng)進行測試。
[page]
八天線LTE測試方法
鑒于前文中所討論過的原因,行之有效的測試方法必須能夠應對所描述的這些挑戰(zhàn):通過便攜機體尺寸提供數量較大的互易性RF信道、考慮到天線模式和極化的信道建模,以及在動態(tài)(活動)場景中測試波束賦型的能力。雙向8×N系統(tǒng)測試所需的信道數量會帶來前所未有的挑戰(zhàn)。圖3顯示的是8x2雙向測試所用的現代系統(tǒng)圖示。傳統(tǒng)的信道仿真器可能占用一個40U機架,并且需要大量的外部RF硬件才能實現相同的信道場景。
圖3:本圖示顯示的是8×2 MIMO波束賦型測試的信道仿真
隨著技術的進步,對測試系統(tǒng)的要求只會變得越來越具挑戰(zhàn)性,而且會變得越來越苛刻。實例之一就是雙層波束賦型應用,其中包含兩個從不同物理位置與同一eNodeB BTS通話的用戶設備。所需的測試拓撲結構中包含一個8×4雙向MIMO信道(也就是包含32個數字信道的16個RF信道)。另外一個實例就是IRC。要想對IRC進行測試,需要eNodeB BTS,即本測試案例中的被測設備(DUT),從一個“預期”的用戶設備和多個起干擾作用的用戶設備接收信號,而且測試中還會考慮到衰減的效應。
隨著新技術的開發(fā)和現有技術在高天線數MIMO系統(tǒng)中的部署,未來還會出現一些極具挑戰(zhàn)性的測試場景。例如,多用戶MIMO(MU-MIMO)并非什么新的測試。但在LTE的MIMO用戶設備條件下進行的此類測試則會帶來一些重大的挑戰(zhàn),因為有多種復雜的技術都以“分層”的方式層疊在一起。在MU-MIMO中,系統(tǒng)會使用信號處理來發(fā)揮多用戶設備之間的空間差異特性。另外一個實例是LTE-A中的協同多點(CoMP)傳輸。當用戶設備連接至多個eNodeB BTS時(通常在重疊的蜂窩邊緣處),該技術會對網絡冗余加以利用。
圖4顯示的是測試雙層波束賦型、MU-MIMO和集成雙向MIMO信道的CoMP時的典型袖珍設置。集成式解決方案的信道密度所發(fā)揮的作用遠不止于在有限的實驗室空間中應對大量RF信道的挑戰(zhàn)。在相信校準和穩(wěn)定性方面,它也是一種穩(wěn)定得多的平臺。
圖4:這種小巧的測試設置可應對雙層波束賦型、MU-MIMO和CoMP測試場景
幾何信道模型
當需要對LTE和LTE-A系統(tǒng)的先進天線技術進行測試時,基于關聯的傳統(tǒng)MIMO信道建模就已經無法勝任了。這種傳統(tǒng)的建模方法無法捕獲MIMO信道的空間特性或前文所討論過的先進天線技術的效果。
多數基于關聯的MIMO信道建模都建立在一項假設的基礎之上,即信號離開發(fā)射天線時是全方向的,而且以同樣的方式到達接收天線。4但在MIMO波束賦型中,實際情況并非如此。
為解決這一問題,研究人員們提出了一種全新的信道建模方法,即所謂的幾何信道建模(GCM)。在GCM中,從發(fā)射天線到接收天線的每條信號路徑都從幾何上受到追蹤,并且合并在一起而形成了信道。這種方法從本質上為天線模式和極化提供了支持。由于具體了這些特質,GCM已被選定對下一代無線技術進行評估。
實時衰減
實時衰減方法可以實時生成信道數據,而不是預先計算出的數據,同時還可以從緩存存儲內容中對其加以回放。推動實時衰減有兩項主要的動力:創(chuàng)建真正的動態(tài)場景并且實現試驗和查錯式的研發(fā)故障查找。在動態(tài)或移動場景中,信道參數會隨時間而改變。實時衰減使測試人員可對信道參數編制腳本,從而對信道的動態(tài)加以模仿。利用實時衰減引擎,為波束賦型測試創(chuàng)建不同類型用戶設備移動的工作將會變得非常簡潔而直觀。
在研發(fā)測試中,需要具備控制信道來實現故障查找的靈活能力。利用幾何信道建模和實時衰減能力,工程師能夠對一項或多項信道參數進行調節(jié),并且立即獲得響應。這種“實驗和查錯式的故障查找”方法在產品開發(fā)中是通用的,而且已經廣泛用于各類系統(tǒng)測試中。
由于整個行業(yè)都在為實現更新的無線應用而追求更高的數據速率,所用的天線數量和先進天線技術的復雜性都必然會與日俱增。這種趨勢將對包含先進天線技術的LTE和LTE-A測試構成巨大的挑戰(zhàn)。因此,新的方法和新的測試場景思維方式都將是不可或缺的。
八天線系統(tǒng)可以將2x2 MIMO系統(tǒng)所用的信道數量提高至原有水平的四倍。但研究人員已經開始探討天線組件數量為2x2系統(tǒng)的8倍的技術。如果在實驗室中重現互易式高天線數測試場景,將會面臨空間和其它資源方面諸多的嚴重制約。與傳統(tǒng)的信道建模相比,新興的先進天線技術也會帶來新的挑戰(zhàn)。當測試人員需要完整理解系統(tǒng)的性能時,在動態(tài)場景中對系統(tǒng)進行測試是必不可少的。
能夠應對這些挑戰(zhàn)的有效測試方法必須使用可支持各種先進天線技術的幾何信道建模。它還必須能夠以實時方式運行動態(tài)場景。最后,這種測試方法還必須能夠可靠、高效地創(chuàng)建八天線系統(tǒng)中雙向MIMO信道的所有細節(jié),而且必須在小巧便攜的設備規(guī)格內實現所有這些功能。
相關閱讀:
TD-LTE系統(tǒng)干擾分析
http://hunt-properties.com/rf-art/80013330
下半年市場需求將趨強勁,TD-LTE是主要推動力
http://hunt-properties.com/rf-art/80020111
LTE智能手機差異化設計點:基帶平臺
http://hunt-properties.com/gptech-art/80019721
LTE手機叫好不叫座 發(fā)展4G需先打好3G攻堅戰(zhàn)
http://hunt-properties.com/rf-art/80012678