你的位置:首頁 > RF/微波 > 正文

一種RFID系統(tǒng)天線的設(shè)計和實現(xiàn)

發(fā)布時間:2011-11-14

中心議題:
  • 一種RFID系統(tǒng)天線的設(shè)計和實現(xiàn)
  • 實際RFID天線設(shè)計主要考慮物理參量
解決方案:
  • 對RFID天線的設(shè)計實際調(diào)試

射頻識別技術(shù)(Radio Frequency Identification,縮寫RFID),射頻識別技術(shù)是20世紀(jì)90年代開始興起的一種自動識別技術(shù),射頻識別技術(shù)是一項利用射頻信號通過空間耦合(交變磁場或電磁場)實現(xiàn)無接觸信息傳遞并通過所傳遞的信息達(dá)到識別目的的技術(shù)。RFID應(yīng)用將繼續(xù)以供應(yīng)物流領(lǐng)域為主,在這個領(lǐng)域用RFID收發(fā)器進(jìn)行包括各種各樣的可移動貨物/產(chǎn)品的記錄和跟蹤,在RFID收發(fā)器(信用卡大小的塑料/紙標(biāo)簽,內(nèi)含芯片、射頻部分和天線)上的必要存儲將繼續(xù)成為主要的應(yīng)用。另外的一個可能應(yīng)用就是將收發(fā)器標(biāo)簽貼到紡織品、藥品包裝或者甚至是單個藥盒內(nèi)。然而,未來RFID還將被用在如地方公共交通、汽車遙控鑰匙、傳送輪胎氣壓以及在移動電話等領(lǐng)域內(nèi)。本文主要通過實際工作中對于各種RFID讀寫系統(tǒng)的對比,總結(jié)研究RFID讀寫器天線設(shè)計中比較實用的方法。

1 實際RFID天線設(shè)計主要考慮物理參量

1.1 磁場強(qiáng)度

磁場強(qiáng)度是線圈安匝數(shù)的一個表征量,反映磁場的源強(qiáng)弱。磁感應(yīng)強(qiáng)度則表示磁場源在特定環(huán)境下的效果。打個不恰當(dāng)?shù)谋确剑阌靡粋€固定的力去移動一個物體,但實際對物體產(chǎn)生的效果并不一樣,比如你是借助于工具的,也可能你使力的位置不同或方向不同。對你來說你用了一個確定的力。而對物體卻有一個實際的感受,你作用的力好比磁場強(qiáng)度,而物體的實際感受好比磁感應(yīng)強(qiáng)度。它定義為磁通密度[1]B除以真空磁導(dǎo)率μ0再減去磁化強(qiáng)度μ,即 -μH為矢量。這樣,在恒定磁場中磁場強(qiáng)度的閉合環(huán)路積分僅與環(huán)路所鏈環(huán)的傳導(dǎo)電流Ic有關(guān)而不含束縛分子電流。

運動的電荷或者說電流會產(chǎn)生磁場,磁場的大小用磁場強(qiáng)度來表示。RFID天線的作用距離,與天線線圈電流所產(chǎn)生的磁場強(qiáng)度緊密相關(guān)。

圓形線圈的磁場強(qiáng)度(在近場耦合有效的前提下,近場耦合有效與否的判斷在1.3節(jié))可用式(1)進(jìn)行計算:
式中:H是磁場強(qiáng)度;I是電流強(qiáng)度;N為匝數(shù);R為天線半徑;x為作用距離。

對于邊長ab的矩形導(dǎo)體回路,在距離為x處的磁場強(qiáng)度曲線可用下式計算。
結(jié)果證實:在與天線線圈距離很?。▁<R)的情況下,磁場強(qiáng)度的上升是平緩的。較小的天線在其中心(距離為0)處呈現(xiàn)出較高的磁場強(qiáng)度,相對來講,較大的天線在較遠(yuǎn)的距離(x>R)處呈現(xiàn)出較高的磁場強(qiáng)度。在電感耦合式射頻識別系統(tǒng)的天線設(shè)計中,應(yīng)當(dāng)考慮這種效應(yīng),如圖1所示。

[page]
1.2 最佳天線直徑


在與發(fā)射天線的距離x為常數(shù)并簡單地假定發(fā)射天線線圈中電流I不變的情況下,如果改變發(fā)送天線的半徑R時,就可以根據(jù)距離x與天線半徑R之間的關(guān)系得到最大的磁場強(qiáng)度H.這意味著:對于每種射頻識別系統(tǒng)的閱讀器作用距離都對應(yīng)有一個最佳的天線半徑R.如果選擇的天線半徑過大,那么在與發(fā)射天線的距離x=0處,磁場強(qiáng)度是很小的;相反,如果天線半徑的選擇太小,那么其磁場強(qiáng)度則以z的三次方的比例衰減,如圖2所示。

 
不同的閱讀器作用距離,有著不同的天線最佳半徑,它對應(yīng)著磁場強(qiáng)度曲線最大值。

從數(shù)學(xué)上來說,也即對R求導(dǎo),如式(3)所示:

從公式的零點中計算是拐點以及函數(shù)的最大值。


發(fā)射天線的最佳半徑對應(yīng)于最大期望閱讀器的2孺值。第二個零點的負(fù)號表示導(dǎo)電路的磁場強(qiáng)度在x軸的兩個方向傳播。這里需要指出的是,使用此式的前提條件,是近場耦合有效。下面簡介近場耦合的概念。

1.3 近場耦合

真正使用前面所提到的公式時,有效的邊界條件為:

d《R以及x<λ/2π,原因是當(dāng)超出上述范圍時,近場耦合便失去作用了,開始過渡到遠(yuǎn)距離的電磁場。一個導(dǎo)體回路上的初始磁場是從天線上開始的。在磁場的傳輸過程中,由于感應(yīng)的增加也形成電場。這樣,最原始的純磁場就連續(xù)不斷地轉(zhuǎn)換成了電磁場。當(dāng)距離大于λ/2π的時候,電磁場最終擺脫天線,并作為電磁波進(jìn)入空間。在作為電磁波進(jìn)入空間之前的這個范圍,就叫做天線的近場,本文所涉及的RFID天線設(shè)計,是基于近場耦合的概念。所以距離應(yīng)當(dāng)限定在上述的范圍之內(nèi)。

1.4 調(diào)諧


RFID系統(tǒng)讀寫器可以等效為一個R-L-C串聯(lián)電路,其中R為繞線線圈的電阻,L為天線自身的電感。一般調(diào)諧過程當(dāng)中,由于天線線圈本身的電容對于諧振的影響很小,可以忽略不計,故為了使閱讀器在工作頻率下天線線圈獲得最大的電流,需要外加一個電容C,完成對天線的調(diào)諧,達(dá)到這一目的。而調(diào)諧電容,天線的電感以及工作頻率之間的關(guān)系,可以通過以下湯姆遜公式求得,即:

[page]
1.5 電感的估算


電感器(電感線圈)和變壓器均是用絕緣導(dǎo)線(例如漆包線、紗包線等)繞制而成的電磁感應(yīng)元件,也是電子電路中常用的元器件之一,相關(guān)產(chǎn)品如共模濾波器等。線圈中有電流通過時,線圈的周圍就會產(chǎn)生磁場。當(dāng)線圈中電流發(fā)生變化時,其周圍的磁場也產(chǎn)生相應(yīng)的變化,此變化的磁場可使線圈自身產(chǎn)生感應(yīng)電動勢(電動勢用以表示有源元件理想電源的端電壓),這就是自感。兩個電感線圈相互靠近時,一個電感線圈的磁場變化將影響另一個電感線圈,這種影響就是互感?;ジ械拇笮∪Q于電感線圈的自感與兩個電感線圈耦合的程度,利用此原理制成的元件叫做互感器。

電感量值的物理意義是:在電流包圍的總面積中產(chǎn)生的磁通量與導(dǎo)體回路包圍的電流強(qiáng)度之比。實際RFID天線調(diào)試的時候,讀寫器天線電感量值可以通過阻抗分析儀測出,在條件有限的情況下,也常采用估算公式進(jìn)行估算。假定導(dǎo)體的直徑d與導(dǎo)體回路直徑D之比很?。╠/D<0.001),則導(dǎo)體回路的電感可簡單地近似為:

式中:N為繞線天線的匝數(shù);R為天線線圈的半徑;d為導(dǎo)體的內(nèi)徑;μ0為自由空間磁導(dǎo)率。

線圈匝數(shù)還有以下的近似公式進(jìn)行估算,在實際應(yīng)用中,兩個公式可以進(jìn)行對照使用:
 
式中:L為線圈電感,單位為nH;A為天線線圈包圍面積,單位為cm2;D為導(dǎo)線直徑,單位為cm.

1.6 天線的品質(zhì)因數(shù)

天線的性能還與它的品質(zhì)因數(shù)有關(guān)。Q既影響能量的傳輸效率,也影響頻率的選擇性。過高的Q值雖然能使天線的輸出能量增大,但是同時,讀寫器的通帶特性也會受到影響。所以在實際調(diào)節(jié)Q值的時候,要進(jìn)行折中的考慮。調(diào)節(jié)Q值,是通過在R-L-C等效電路上面串接一個電阻R1實現(xiàn)的,具體的公式如下:

Q=ωL/(R+R1) (8)

2 實際調(diào)試

RFID天線的設(shè)計需要考慮很多因素,上述幾個是實際的調(diào)試過程中的重要物理參量。明確了上述物理參量之后,在給定期望距離以及工作頻率等RFID系統(tǒng)要求之后,在條件有限的情況下,就可以根據(jù)需要進(jìn)行簡單的RFID天線設(shè)計了。下面給出一個應(yīng)用于軌道交通的RFID天線設(shè)計的實際例子。此處設(shè)計一個期望最大作用距離為1 cm,工作頻率在125 kHz的繞線天線,系統(tǒng)要求閱讀器天線線圈的半徑盡量小,不超過1 cm.具體步驟如下:

首先確定天線的最佳半徑,不宜太大也不宜太小,理想的最佳天線半徑應(yīng)當(dāng)為期望作用距離的2倍,在實際設(shè)計的時候,應(yīng)當(dāng)根據(jù)設(shè)計需求在設(shè)計中進(jìn)行折衷的考慮,在保證系統(tǒng)要求的前提下,盡可能地接近最佳值。本例中閱讀器天線的最佳半徑應(yīng)當(dāng)為1.4

cm,但是考慮到系統(tǒng)對于天線半徑尺寸的要求不超過1 cm,所以實際中取半徑為0.8

cm.在允許的條件下,為使效果更好,可以加入一個帶有適量鐵氧體的天線骨架、天線以及閱讀器板子,如圖3所示。


[page]
其次,再根據(jù)工作頻率以及系統(tǒng)本身的要求確定電感量的大致范圍,本系統(tǒng)中取電感量在600~800μH.再者,用電感量與匝數(shù)關(guān)系的經(jīng)驗公式大致估計繞線的匝數(shù)。本例中,取電感量在700μH,用直徑為0.27 mm的銅導(dǎo)線進(jìn)行繞制天線。由公式

計算出匝數(shù)大概在266圈左右,繞完后,根據(jù)湯姆遜公式

選取所用的調(diào)諧電容。用相關(guān)的儀器(如頻譜儀和矢量網(wǎng)絡(luò)分析儀)測量出諧振頻率,這個時候,由于電感只是估算的,而且選用的匹配電容也是具有一定標(biāo)稱值的,并不能做到與計算一致,所以總是會存在誤差。

由于調(diào)諧的電容是已知的,而且有固定的標(biāo)稱值,可以根據(jù)湯姆遜公式由這個時候測得的頻率反推出在恰好達(dá)到此頻率的時候所需要的電感的大小,即繞線線圈電感??搭l率的偏移情況,按電感量估算公式逐步增加或者減少線圈匝數(shù),直到達(dá)到指定的諧振頻率125 kHz.用矢量網(wǎng)絡(luò)分析儀以及頻譜儀測諧振頻率的實際圖片如圖4,圖5所示。

3 結(jié) 語


根據(jù)矢量網(wǎng)絡(luò)分析儀以及頻譜分析儀的顯示,本RFID天線已經(jīng)成功諧振在125 kHz.接下來便可根據(jù)所提到的公式,計算出調(diào)Q值所用的電阻的大小,然后根據(jù)系統(tǒng)的要求進(jìn)行進(jìn)一步的聯(lián)調(diào)測試了。實際工程中,RFID讀寫器及標(biāo)簽有各種電路結(jié)構(gòu),但是歸根到底都是等效成R-L-C諧振電路的,比如說PHILIPS的MIFARE系列讀寫器的天線設(shè)計,所以本文對于各種RFID系統(tǒng)的天線設(shè)計具有普遍的指導(dǎo)意義。
要采購線圈么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉