你的位置:首頁 > 電源管理 > 正文

仿真看世界之SiC單管的開關(guān)特性

發(fā)布時間:2022-07-06 來源:英飛凌 責任編輯:wenwei

【導(dǎo)讀】如下圖1是今年英飛凌新推出的一顆TO-247-3封裝的1200V/45m?的SiC MOSFET單管。假定該器件焊到PCB后,其管腳到器件內(nèi)部芯片柵極、漏極和源極的雜散參數(shù)如下圖所示,其中VD1_Q1、VG1_Q1和VS2_Q1表示器件Q1外部管腳測到的信號,VD0_Q1、VG0_Q1和VS0_Q1表示器件Q1內(nèi)部芯片的信號,芯片Q1內(nèi)包含寄生電阻Rgint=4?。


特別提醒


仿真只是工具,仿真無法替代實驗,仿真只供參考,一 切以實際測量為準。



研發(fā)不僅是腦力活,也是體力活,搞過電力電子的同學(xué)想必深有體會。


如果大家山重水復(fù)于研發(fā)日常的擰螺絲、焊板子、測電路、打波形、調(diào)參數(shù)、堆代碼、寫文檔,不妨打開手機,進入英飛凌公眾號,隨我們一起看看仿真世界里的柳暗花明。


因此,英飛凌官網(wǎng)上線了全線SiC單管的SPICE模型,以便大家在實驗之余,利用SIMetrix或LTsipce等工具進行器件應(yīng)用的相關(guān)仿真。


這一次,我們將利用SIMetrix SPICE仿真,一窺SiC單管的開關(guān)瞬間。


如下圖1是今年英飛凌新推出的一顆TO-247-3封裝的1200V/45m?的SiC MOSFET單管。假定該器件焊到PCB后,其管腳到器件內(nèi)部芯片柵極、漏極和源極的雜散參數(shù)如下圖所示,其中VD1_Q1、VG1_Q1和VS2_Q1表示器件Q1外部管腳測到的信號,VD0_Q1、VG0_Q1和VS0_Q1表示器件Q1內(nèi)部芯片的信號,芯片Q1內(nèi)包含寄生電阻Rgint=4?。


21.png

22.png

圖1 SiC單管及其內(nèi)部雜散參數(shù)(僅供參考)


為了研究該SiC MOSFET單管的開關(guān)瞬間特性,我們搭建了雙脈沖仿真電路,如下圖2:

 

23.png

圖2 SiC單管雙脈沖仿真電路


Q1/Q2皆為上述SiC MOSFET單管,其中下管Q2進行雙脈沖開關(guān),上管Q1維持關(guān)斷電平。驅(qū)動部分的默認設(shè)置為VGS=+15V/0V,Rgon=2?,Rgoff=2?。


鑒于器件內(nèi)部寄生參數(shù)的客觀存在,在器件管腳處測得的信號不能真實反映芯片內(nèi)部的電壓變化,以下管Q2開關(guān)為例,如下圖3所示:


1656063650823533.png圖3 下管Q2的器件參數(shù)與驅(qū)動電路


從器件外部管腳測到的VGS電壓為綠色的“VG1_Q2-VS2_Q2”,而器件內(nèi)部芯片的VGS電壓為藍色的“VG0_Q2-VS0_Q2”,顯然,兩者波形是有所差異的,如下圖4和圖5:


1656063633667899.png

圖4 Q2開通時的器件內(nèi)外的柵極電壓

 

1656063622955723.png

圖5 Q2關(guān)斷時的器件內(nèi)外的柵極電壓


究其原因,則是柵極與源極之雜散電感作祟,尤以源極處為甚,具體如圖6:


其中,綠色為外部柵極電壓(VG1_Q2-VS2_Q2),藍色為芯片柵極電壓(VG0_Q2-VS0_Q2),紅色為芯片+柵極電感的柵極電壓(VG1_Q2-VS0_Q2),而藍色與紅色差異很小。所以,在器件外部看到的柵極電壓振蕩,主要來自源極電感的影響。


1656063604647697.png

圖6 不同位置門極電壓VGS


因此,后續(xù)分析將重點聚焦芯片內(nèi)部之不可測的柵極電壓,而非管腳處之可測非真實者。


下管Q2雙脈沖動作時,觀測上管Q1的相關(guān)波形,如下圖7所示:


1656063588883514.png

圖7 下管Q2開通瞬間的上管Q1波形


可以看到,在Q2開通瞬間,Q1在器件外部管腳VGS(綠色: VG1_Q1-VS2_Q1)和芯片VGS(藍色: VG0_Q1-VS0_Q1)的差異很大,這是為什么呢?


為了便于分析,我們抓取了Q1的電流Id_Q1(電流正方向: 紅色方向)和芯片的柵漏極電壓(米勒電壓: VD0_Q1-VG0_Q1),以及源極電感電壓(紅色: VS0_Q1-VS2_Q1),如下圖8所示;


29.jpg

圖8 器件內(nèi)外VGS電壓、源極電感電壓、源極電流與米勒電壓的波形(3pin)


如上:Q1內(nèi)部的芯片VGS電壓,是源極電感的電壓激勵源和米勒電容處的電流激勵源,兩者共同影響的結(jié)果。其中:由米勒電壓(藍色: VD0_Q1-VG0_Q1)產(chǎn)生的米勒電流,會抬高Q1柵極電壓以增加寄生導(dǎo)通的風(fēng)險,其影響是單調(diào)的;而源極電感電壓(VS0_Q1-VS2_Q1)會呈現(xiàn)先正后負的突變特性,是因為源極電流Id_Q1在續(xù)流和反向恢復(fù)階段的電流di/dt極性突變,其前半部分對Q1內(nèi)部柵極電壓(藍色: VG0_Q1-VS0_Q1)有明顯的抑制作用,而后半部分則反之。 


那么,在這個仿真Case(實際應(yīng)用不一定)中,源極電感or米勒電容,兩者影響孰輕孰重呢?


為了研究Q1源極電感的影響,我們維持Q2所有配置不變,以保證相同的開關(guān)速度,以及Q1處的dv/dt和di/dt不變,只將Q1器件外部的源極直接連到芯片源極,以屏蔽其對Q1驅(qū)動回路的影響,類似TO-247-4pin的原理,其他參數(shù)不變,得到仿真波形,如下圖9所示:(此時Q1是否寄生導(dǎo)通只有米勒電容的影響)


1656063559909691.png

圖9 屏蔽芯片源極電感前 (虛線/3pin)后(實線/4pin)的仿真波形對比


如上:虛線部分為源極改動之前的波形(3pin),實線部分為源極改動之后的波形(4pin)。我們對比改動前后Q1電流Id_Q1(紅色: Id_Q1)、米勒電壓VDG (藍色: VD0_Q1-VG0_Q1)和芯片VGS波形(藍色: VG0_Q1-VS0_Q1),發(fā)現(xiàn)兩者有明顯區(qū)別。


為了進一步驗證,我們把驅(qū)動電壓VGS從+15V/0V改為+15V/-3V,其仿真波形結(jié)果如圖10所示。同樣改動Q1源極電感的位置以模擬3pin/4pin,可以看到電流Id_Q1和米勒電壓VDG波形實線(4pin)和虛線(3pin)重合,相同的結(jié)論是:4pin的芯片VGS電壓比3pin的稍微高一點。

 

1656063543192137.png

圖10 調(diào)整VGS電壓后,屏蔽源極電感前 (虛線/3pin)后(實線/4pin)的仿真波形


特別備注


以上仿真,只借鑒其定性之趨勢,不深究其定量之判定。實際應(yīng)用,須以實測為準。


微信文淺,篇幅有限,蜻蜓點水,點到即止。


仿真的世界很奇妙,希望大家在勞累躬親的實驗之余,打開電腦跑個仿真泡杯茶,享受片刻的科研悠閑時光。


關(guān)于英飛凌


英飛凌設(shè)計、開發(fā)、制造并銷售各種半導(dǎo)體和系統(tǒng)解決方案。其業(yè)務(wù)重點包括汽車電子、工業(yè)電子、射頻應(yīng)用、移動終端和基于硬件的安全解決方案等。


英飛凌將業(yè)務(wù)成功與社會責任結(jié)合在一起,致力于讓人們的生活更加便利、安全和環(huán)保。半導(dǎo)體雖幾乎看不到,但它已經(jīng)成為了我們?nèi)粘I钪胁豢苫蛉钡囊徊糠?。不論在電力生產(chǎn)、傳輸還是利用等方面,英飛凌芯片始終發(fā)揮著至關(guān)重要的作用。此外,它們在保護數(shù)據(jù)通信,提高道路交通安全性,降低車輛的二氧化碳排放等領(lǐng)域同樣功不可沒。


來源:英飛凌工業(yè)半導(dǎo)體,作者:張浩  



免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


推薦閱讀:


依然缺貨,銷售額飆升:汽車MCU的市場走勢,你看懂了嗎?

如何設(shè)計可靠性更高、尺寸更小、成本更低的高電壓系統(tǒng)解決方案

分立式CoolSiC MOSFET的寄生導(dǎo)通行為研究

5V輸入升壓架構(gòu)兩節(jié)串聯(lián)鋰電池充電管理芯片SGM41528

從負供電軌生成正電壓,這種簡單高效且組件少的電路你要知道

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉