【導讀】比較SiC開關的數(shù)據(jù)資料并非易事。由于導通電阻的溫度系數(shù)較低,SiC MOSFET似乎占據(jù)了優(yōu)勢,但是這一指標也代表著與UnitedSiC FET相比,它的潛在損耗較高,整體效率低。
諺語說:“不怕低,只怕比”。這條諺語首次出現(xiàn)在1440年約翰·利德蓋特的《馬鵝羊之間的辯論》中。疲于比較的不僅僅是文章中的動物,現(xiàn)代功率轉換器設計師們也不得不拼命從大量競爭性主張中嘗試找出適合他們的應用的功率開關,并進行比較,以獲得“最佳性能”。如果繼續(xù)以農(nóng)牧業(yè)來比喻,這個問題就像是將一個蘋果與一堆蘋果相比較,因為如果不考慮與其他指標的權衡取舍,就不能評價任何單個電子參數(shù)的好壞。開關導通電阻就是一個好例子,你必須在相同的額定電壓下,在各個制造商的建議柵極驅動電壓下,在相同的結溫和漏極電流下,在相同的封裝中比較零件,才能了解這個參數(shù)。
Si-MOSFET、SiC-MOSFET和SiC FET競爭上崗
在不低于幾百伏的較高電壓下,Si MOSFET、SiC MOSFET和UnitedSiC FET是同一個位置的有力競爭產(chǎn)品,它們的數(shù)據(jù)資料中通常標明特定額定電壓、結溫和柵極驅動電壓下的RDS(ON)值。例如,UnitedSiC最近推出的零件UJ4C075018K4S就提供了在VGS = 12V、溫度為25°C至175°C、漏極電流為20A時的導通電阻值。從中,您可以輕松獲得該零件在給定溫度下的RDS(ON)溫度系數(shù)數(shù)值,在Tj =125°C時,該數(shù)值約為+70-75%。
650V SiC MOSFET的擁護者可能會指出,他們發(fā)現(xiàn)其他類似器件在Tj =125°C下的該數(shù)值通常為+20-25%。這能說明SiC MOSFET比其他器件好三倍嗎?恐怕不能這么武斷。首先,部分正溫度系數(shù)值是必要的,可以迫使晶粒中的單元分擔電流,而不會出現(xiàn)熱點和熱散逸。同理,設計師依靠正值才能并聯(lián)器件,并自然分流。
SiC MOSFET的電阻由其反型溝道決定
SiC MOSFET較低的RDS(ON)溫度系數(shù)值實際上表明會出現(xiàn)較深層次的影響。MOSFET和JFET是“單載流子”器件,電子流會經(jīng)過不同區(qū)(基質(zhì)、漂移層、JFET區(qū)和溝道等)。在650V SiC MOSFET中,反型溝道決定了總電阻,而總電阻實際上會隨著溫度降低。溝道電阻與自由載流子數(shù)和反型層電子遷移率的乘積成反比。隨著溫度升高,閾值電壓會降低,而溝道中的自由載流子數(shù)會增加,因而電阻會降低。其余器件區(qū)(即JFET、漂移層和基質(zhì)電阻)的正溫度系數(shù)會抵消這種影響,從而產(chǎn)生不高的凈正Tc值。在SiC JFET中,沒有反型溝道來抵消JFET、漂移層和基質(zhì)的正溫度系數(shù)。同時,低壓Si MOSFET僅占總導通電阻的一小部分,這解釋了為什么采用它時的Tc值比采用SiC MOSFET時要高,不過有說服力的一點是,SiC FET中不存在由不理想的SiC反型層造成的損耗(圖1)。
【圖1:典型的SiC MOSFET溝槽結構和沒有大損耗SiC MOS反型溝道的UnitedSiC FET,后者有較高的導通電阻溫度系數(shù),但是損耗較低】
SiC FET的整體導電損耗較低
如果審視絕對值,則會發(fā)現(xiàn)決定性的證據(jù)。如圖2所示,在比較650/750V器件的RDS(ON)時,在25°C時,UnitedSiC FET的導通電阻大約是SiC MOSFET的三分之一,優(yōu)勢最明顯,在150°C時,仍比后者好2倍左右,在相同有效晶粒面積下,前者帶來的導電損耗大約是后者的一半。
【圖2:UnitedSiC FET導通電阻的Tc較高,但是絕對值較低】
采用UnitedSiC FET的最終效果是整體導電損耗較低,且RDS(ON)的正溫度系數(shù)十分健康,可確保單元和并聯(lián)器件之間實現(xiàn)有效分流。很明顯,確保合理進行比較并理解這種效果背后的機制是值得的,它揭示了什么才是真正重要的,那就是較低的整體損耗。
文章來源: UnitedSiC
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
推薦閱讀: