你的位置:首頁(yè) > 電源管理 > 正文

采用兩級(jí)電源架構(gòu)方案提升48V配電系統(tǒng)功率密度和數(shù)據(jù)中心能效

發(fā)布時(shí)間:2020-06-03 來(lái)源:Qian Ouyang, Rohan Samsi 和 Jinghai Zhou 責(zé)任編輯:wenwei

【導(dǎo)讀】當(dāng)前的數(shù)據(jù)中心,通常仍需要一個(gè) 12V 背板以及板上配電功能,并采用單相或多相同步 Buck 降壓調(diào)節(jié)器,方可將電壓降到 1V 左右。正常情況下,這些數(shù)據(jù)中心機(jī)架的額定功率最大為 20kW。而業(yè)內(nèi)的需求是希望將每個(gè)機(jī)架的功率密度能提高到100kW,從而減少整體尺寸。
 
其實(shí),完全可以通過(guò)使用 48V 背板和配電來(lái)實(shí)現(xiàn)這一需求,然而這種方法卻存在諸多挑戰(zhàn),因?yàn)樗鼰o(wú)法依靠傳統(tǒng)同步 Buck 降壓調(diào)節(jié)器將48V 電壓驅(qū)動(dòng)至電路板。那么,還有什么其他辦法可以在不增加成本的前提下提高數(shù)據(jù)中心的功率密度呢?本文概述了一種兩級(jí)架構(gòu)解決方案——以一種靈活的、可調(diào)節(jié)的、高性價(jià)比方式,將 48V 電壓驅(qū)動(dòng)至負(fù)載點(diǎn)(POL,大約 1-5V),這對(duì)于下一代服務(wù)器功率傳輸將大有裨益。
 
方案
 
隨著用戶對(duì)數(shù)據(jù)中心的需求越來(lái)越大,提高數(shù)據(jù)中心尺寸和密度也變得迫在眉睫。其中關(guān)鍵制約因素是服務(wù)器每個(gè)機(jī)架的功率限制大約只有20kW,這種限制由次優(yōu)的配電網(wǎng)絡(luò)導(dǎo)致而成。由于大部分芯層和背板工作在 12V,需要大量覆銅來(lái)限制每個(gè)機(jī)架的功率。對(duì)此,開放計(jì)算項(xiàng)目(OCP)和谷歌已經(jīng)提出了將工作電壓提高到 48V的解決方案,能將每個(gè)機(jī)架的安裝容量提高到每架 50-100kW。然而這種架構(gòu)尚未成功的至關(guān)因素是缺乏下游解決方案。(也就是說(shuō):需將 48V 電壓驅(qū)動(dòng)至電路板上安裝的負(fù)載點(diǎn)(POL),包括處理器,內(nèi)存條,和其他 ASICs 專用集成電路)。
 
同時(shí)也有人提出了幾種不同的方法來(lái)解決 48V 輸入到負(fù)載點(diǎn)(POL)的配電問(wèn)題——需要克服的主要挑戰(zhàn)包括可調(diào)性、成本、效率和尺寸問(wèn)題。
 
可調(diào)性和成本
 
首先,很難將 48V 電壓分配到各個(gè)負(fù)載點(diǎn),包括用于電源的小電流,例如 USB 和 VGA 端口,這些端口在 2-5V 時(shí)通常每個(gè)會(huì)消耗幾百毫安的電流;再包括處理器,這些處理器在接近 1V 時(shí)會(huì)消耗幾百安培的電流。也有一些可行的解決方案,如通過(guò)精確地調(diào)節(jié)中間母線和使用 DC/DC 變壓器進(jìn)行最終降壓,將電壓直接從 48V 驅(qū)動(dòng)到負(fù)載電壓(1-5V)。
 
這些解決方案對(duì)于大電流電源應(yīng)用是很有效,但是它們都難以縮小規(guī)模,對(duì)大多數(shù)小電流電源來(lái)說(shuō)非常昂貴,甚至對(duì)于大電流電源來(lái)說(shuō)成本效益也不夠高。因此,有人提出了另一種解決方案:使用氮化鎵 (GaN) 來(lái)解決此難題,采用一種簡(jiǎn)單的同步降壓解決方案來(lái)完成直接的電壓轉(zhuǎn)換。當(dāng)然,如果成本和大批量生產(chǎn)變得可行時(shí),它們的確具有廣大的市場(chǎng)前景,但就目前看來(lái)依舊遙遙無(wú)期。
 
效率和尺寸
 
為了適應(yīng)當(dāng)前服務(wù)器板的要求,電路板解決方案必須同時(shí)滿足高效率和小尺寸。48V 至 1V 的轉(zhuǎn)換效率至少在 93% 及以上,因?yàn)閷?duì)于 12V-1V 的電壓轉(zhuǎn)換,目前最先進(jìn)的轉(zhuǎn)換效率為95%。再加上工業(yè)標(biāo)準(zhǔn)機(jī)架和插入背板的配電板尺寸限制,48V-1V 轉(zhuǎn)換器尺寸不得大于 12V-1V 轉(zhuǎn)換器尺寸。
 
解決方案
 
本文提出的 48V 至低壓配電解決方案為一種兩級(jí)轉(zhuǎn)換方案,相比于既有的數(shù)據(jù)中心解決方案,具有更高效率、更低成本和可調(diào)性優(yōu)勢(shì)。
 
第一級(jí)
 
首先將VIN 電源 (48V)分布至整個(gè)板上,然后降壓至可變的中間電壓值,通常為 5-8V。在 CPU 和存儲(chǔ)電源群集中生成 5-8V 可變電壓,由獨(dú)立轉(zhuǎn)換器生成其他配電功率(總計(jì)約 50W)。中間浮動(dòng)電源可確保完全的軟開關(guān),使用半橋、諧振、LLC 變換器能實(shí)現(xiàn) 98% 的峰值效率。由于輸入電壓低于 60V,所以無(wú)需隔離。采用變壓器代替電感作為 LLC 網(wǎng)絡(luò)的一部分,更易實(shí)現(xiàn)功能性隔離,同時(shí)有助于電壓從 48V 降至 5-8V。這一解決方案的基本理念是模塊化第一級(jí)解決方案(見(jiàn)圖1)。
 
采用兩級(jí)電源架構(gòu)方案提升48V配電系統(tǒng)功率密度和數(shù)據(jù)中心能效
圖1:第一級(jí)模塊前視圖
 
第一級(jí)模塊可以根據(jù)功率輸出的功能進(jìn)行調(diào)節(jié),但是對(duì)于典型單處理器服務(wù)器,僅需2種模塊即可。第一級(jí)的另一個(gè)獨(dú)特之處為多源極。當(dāng)市場(chǎng)上諸如 GaN 之類的技術(shù)開始普及時(shí),可以在不影響下游解決方案的情況下無(wú)縫更換這些模塊。非穩(wěn)壓可變 5-8V 電壓也可由 5-8V 穩(wěn)壓代替,不會(huì)對(duì)整個(gè)系統(tǒng)造成任何干擾,從而可以保持互操作性。
 
第二級(jí)
 
第二級(jí)完全取決于所分配的電源。在1毫安負(fù)載情況下,第二級(jí)就像使用線性低壓差(LDO)調(diào)節(jié)器一樣簡(jiǎn)單。隨著功率級(jí)的提高,第二級(jí)可以充分利用單相同步降壓調(diào)節(jié)器。隨著輸入電壓的下降,低占空比率的要求也隨之減少,并且還可以優(yōu)化場(chǎng)效應(yīng)管(FET)和效率,減少損耗。與典型的 12V 電源相比,此種通過(guò)減少高擊穿電壓 FET 需求的解決方案,不僅可以降低元器件的成本,還可以從效率上改善它們的品質(zhì)因數(shù)。而針對(duì)處理器和存儲(chǔ)器中更高的電流解決方案,可采用多相交錯(cuò)并聯(lián)調(diào)節(jié)器(見(jiàn)圖2)。
 
隨著輸入電壓的降低,這些多相變換器的峰值效率可高達(dá)約97%。得益于大部分變換器中前饋控制的改善,浮動(dòng)輸入電壓(5-8V,第一級(jí)輸出)也變得更易處理。由于使用了更小尺寸的電感和更少的電容,高頻變換器的尺寸也變得更小。
 
采用兩級(jí)電源架構(gòu)方案提升48V配電系統(tǒng)功率密度和數(shù)據(jù)中心能效
圖2:第二級(jí)
 
總結(jié)/結(jié)論
 
該解決方案的總效率約為 95%,超過(guò)了 48V-1V 轉(zhuǎn)換 93% 的目標(biāo)效率,可匹敵最先進(jìn)的12V-1V轉(zhuǎn)換效率。因?yàn)槟K可以豎直貼裝,所以不會(huì)增加電路板的尺寸。第二級(jí)尺寸減小的后續(xù)增益對(duì)應(yīng)了第一級(jí)尺寸的增加。第二級(jí)變換器的靈活使用和第一級(jí)變換器的響應(yīng)調(diào)整功能,增加了解決方案的可調(diào)性。采用此種解決方案,在保證數(shù)據(jù)中心成本和尺寸不變的同時(shí),可實(shí)現(xiàn)每機(jī)架100kW的功率密度。
 
 
推薦閱讀:
 
電源供電以及電機(jī)驅(qū)動(dòng)原理與電路分析
分析、優(yōu)化和消除帶VCO的鎖相環(huán)在高達(dá)13.6 GHz處的整數(shù)邊界雜散
交錯(cuò)ADC揭秘
10BASE-T1L:將大數(shù)據(jù)分析范圍擴(kuò)大到工廠網(wǎng)絡(luò)邊緣
如何提高電池監(jiān)測(cè)系統(tǒng)中的溫度測(cè)量精度?
要采購(gòu)機(jī)架么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉