【導(dǎo)讀】高功率LED在現(xiàn)代照明系統(tǒng)中的應(yīng)用數(shù)量不斷激增,涵蓋汽車前照燈、工業(yè)/商業(yè)標(biāo)識、建筑照明以及各種消費電子等應(yīng)用。行業(yè)之所以轉(zhuǎn)向LED技術(shù),是因為固態(tài)照明與傳統(tǒng)光源相比具有明顯的優(yōu)勢:電能轉(zhuǎn)換為光輸出不僅效率高,而且使用壽命長。
隨著越來越多的應(yīng)用采用LED照明,為了提高光輸出,對LED更高電流的需求也日益增長。驅(qū)動大電流LED串的最大挑戰(zhàn)之一是在功率轉(zhuǎn)換器級保持高效率,從而提供穩(wěn)定調(diào)節(jié)的LED電流。功率轉(zhuǎn)換器效率不高體現(xiàn)為電流調(diào)節(jié)器電路的開關(guān)元件引起的發(fā)熱現(xiàn)象。
LT3762 是一款同步升壓型LED控制器,旨在減少高功率升壓型LED驅(qū)動器系統(tǒng)中常見的效率損耗源。該器件的同步運行可最大限度地減少異步DC-DC轉(zhuǎn)換器中箝位二極管的正向壓降通常會產(chǎn)生的損耗。這一效率提升使LT3762能夠提供比類似異步升壓型LED驅(qū)動器更高的輸出電流,特別是在低輸入電壓時。
為了改善低輸入電壓時的工作性能,通過配置一個板載DC-DC穩(wěn)壓器,即使輸入電壓降至7.5 V以下,也能為柵極驅(qū)動電路提供7.5 V的電壓。在低輸入電壓條件下提供強大的柵極驅(qū)動電壓源,使得MOSFET在輸入電壓降低時產(chǎn)生較少的熱量,從而使工作電壓輸入范圍最低達(dá)3 V。
圖1. LT3762演示電路(DC2342A)可在寬輸入電壓范圍內(nèi)以2 A(最高32 V)驅(qū)動LED。通過額外的MOSFET和電容可輕松修改該演示電路,以提高輸出功率。
該款升壓型LED控制器可配置為在100 kHz至1 MHz固定開關(guān)頻率之間工作,提供−30% × fSW展頻調(diào)制選項,以降低與開關(guān)相關(guān)的EMI能量峰值。LT3762可采用升壓、降壓或升壓/降壓拓?fù)潋?qū)動LED。高端PMOS斷開開關(guān)有助于PWM調(diào)光,并在LED處于開路/短路狀態(tài)時保護器件免受潛在損害。
LT3762采用內(nèi)部PWM發(fā)生器,利用單個電容和一個直流電壓來設(shè)置頻率和脈沖寬度,以實現(xiàn)高達(dá)250:1的PWM調(diào)光比,也可使用外部PWM信號實現(xiàn)高達(dá)3000:1的調(diào)光比。
圖2中的原理圖顯示使用LT3762的演示電路應(yīng)用(DC2342A),其中LT3762配置為在4 V至28 V的輸入電壓范圍內(nèi)以2 A(最高32 V)驅(qū)動LED。LT3762同步升壓型LED控制器采用4 mm × 5 mm QFN封裝和28引腳TSSOP封裝。
圖2. 32 V、2 A LT3762升壓型LED驅(qū)動器。
同步開關(guān)
在異步DC-DC轉(zhuǎn)換器拓?fù)渲?,肖特基箝位二極管用作無源開關(guān),以簡化轉(zhuǎn)換器對單個MOSFET進(jìn)行脈沖寬度調(diào)制的控制方案。雖然這確實簡化了控制,但它限制了輸出電流的大小。肖特基二極管與PN結(jié)器件一樣,在任何電流通過器件之前都會具有正向壓降。由于肖特基二極管的功耗是其正向壓降與電流的乘積,因此輸出電流水平過高將產(chǎn)生數(shù)瓦的導(dǎo)通功耗,從而使肖特基二極管升溫,最終導(dǎo)致轉(zhuǎn)換器效率降低。
LT3762同步開關(guān)轉(zhuǎn)換器與異步轉(zhuǎn)換器不同,不會有輸出電流受限的情況,這是因為同步轉(zhuǎn)換器采用第二MOSFET代替肖特基二極管。MOSFET與肖特基二極管不同,它沒有正向壓降。相反,當(dāng)MOSFET處于完全增強狀態(tài)時,其漏極到源極間的電阻非常小。在大電流下,MOSFET產(chǎn)生的導(dǎo)通損耗遠(yuǎn)低于肖特基二極管,因為功耗與漏源電阻的平方和通過器件的電流的乘積成正比。即使在最低7 V的全功率輸入電壓下,MOSFET也只會面臨大約30°C的溫升(如圖3所示)。
圖3. 在相同測試條件下,選用類似的元件,同步LT3762(左圖)驅(qū)動2 A、32 V的LED串,其溫升遠(yuǎn)低于異步LT3755-2電路(右圖)。這種熱性能的提高歸功于以同步MOSFET代替肖特基箝位二極管,從而可消除二極管正向壓降引起的損耗。
低輸入電壓工作
高功率升壓型LED控制器的另一個挑戰(zhàn)發(fā)生在低輸入電壓工作期間。大多數(shù)升壓型DC-DC穩(wěn)壓器IC使用由器件輸入端供電的內(nèi)部LDO穩(wěn)壓器,為IC中的模擬和數(shù)字控制電路提供較低的電壓電源。在從內(nèi)部LDO穩(wěn)壓器獲取電源的電路中,柵極驅(qū)動器消耗的功率最大,并且它的性能受LDO穩(wěn)壓器輸出波動的影響。當(dāng)輸入電壓降至LDO的輸出電壓以下時,LDO輸出開始驟降,這將限制柵極驅(qū)動器正常增強MOSFET的能力。當(dāng)MOSFET處于未完全增強狀態(tài)時,它們工作于較高電阻狀態(tài),因此當(dāng)電流通過器件時會以熱量形式耗散功率。
升壓轉(zhuǎn)換器拓?fù)渲械牡洼斎腚妷汗ぷ魈匦詫?dǎo)致輸入電流較高,當(dāng)該電流必須流過電阻更大的MOSFET器件時,會加劇導(dǎo)通損耗。根據(jù)穩(wěn)壓器IC的柵極驅(qū)動電壓,這會嚴(yán)重限制器件可實現(xiàn)且不發(fā)生過熱的低輸入電壓范圍。
LT3762采用集成式降壓-升壓型DC-DC穩(wěn)壓器,而非LDO穩(wěn)壓器,即使輸入電壓很低時,也可為內(nèi)部電路提供7.5 V的電壓。該降壓-升壓型穩(wěn)壓器僅占用LT3762 IC的三個引腳,只需兩個額外元件。與具有4.5 V和6 V最小輸入電壓的內(nèi)部LDO控制器器件相比,LT3762能夠?qū)⑤斎腚妷汗ぷ鞣秶孪迶U展至3 V。降壓-升壓型轉(zhuǎn)換器的7.5 V輸出可為柵極驅(qū)動器提供電源,并允許使用6 V/7 V柵極驅(qū)動MOSFET。MOSFET的柵極驅(qū)動電壓越高,往往漏源電阻就越低,并且與柵極驅(qū)動電壓較低的類似器件相比,(除開關(guān)損耗以外)工作效率更高。
圖4. 32 V、2 A LT3762 LED驅(qū)動器可在寬輸入范圍內(nèi)保持高效率。低VIN折 返有助于避免過大的開關(guān)/電感電流。異步開關(guān)以24 V輸入電壓啟動。
靈活的拓?fù)?/div>
與ADI公司大多數(shù)其他升壓型LED驅(qū)動器一樣,LT3762驅(qū)動LED的模式可重新配置,既可采用升壓配置,也可采用降壓、升壓-降壓和降壓-升壓模式。在這些升壓型轉(zhuǎn)換器的拓?fù)渥凅w中,利用ADI公司獲得專利的升壓-降壓模式配置可作為升壓/降壓型轉(zhuǎn)換器工作,同時還具有低EMI工作的優(yōu)勢。該拓?fù)淅脙蓚€電感,一個面向輸入,另一個則面向輸出,幫助濾除開關(guān)所產(chǎn)生的噪聲。這兩個電感有助于抑制耦合到輸入電源、可能連接的其他器件以及LED負(fù)載的EMI。
還可在升壓-降壓模式的拓?fù)渲刑砑宇~外電路,以提供LED–節(jié)點到GND的短路保護。圖5中的原理圖顯示LT3762采用升壓-降壓模式配置,并增加了該保護電路。當(dāng)LED–短路到GND時,會強制關(guān)閉M4,以阻斷經(jīng)過電感到輸入的導(dǎo)通路徑并防止過度消耗電流。強制關(guān)閉M4時,D3將EN/UVLO引腳拉至低電平,從而在消除短路前阻止轉(zhuǎn)換器開關(guān)。將這一額外保護電路與LT3762的內(nèi)置開路/短路檢測結(jié)合使用,就能獲得一個能夠應(yīng)對惡劣環(huán)境中各種故障狀況的強健解決方案。
圖5. LT3762采用25 V、1.5 A升壓-降壓配置,帶有額外的LED–至GND的短路保護。
結(jié)論
異步升壓型轉(zhuǎn)換器正常工作時,通常很難避免在提供高輸出電流時,不會產(chǎn)生大量的功率損失并造成箝位二極管發(fā)熱。除了肖特基二極管產(chǎn)生的損耗之外,這些轉(zhuǎn)換器在輸入電壓降低時難以保持最大功率輸出能力,這限制了輸入范圍內(nèi)的功率輸出。異步DC-DC轉(zhuǎn)換器根本無法適用于更高功率水平,因此必須采用同步開關(guān)方案以滿足應(yīng)用規(guī)格要求。LT3762升壓型LED控制器通過其同步開關(guān)解決了提供大電流輸出的問題,由于采用了板載DC-DC轉(zhuǎn)換器,它能夠在更低的輸入電壓下工作,并且可靈活采用各種電路拓?fù)洹?/div>
推薦閱讀:
特別推薦
- 增強視覺傳感器功能:3D圖像拼接算法幫助擴大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時代國產(chǎn)IP機遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護問題
- 當(dāng)過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護器
濾波電感
濾波器