推薦閱讀:
用于高效電源轉(zhuǎn)換器的全新電路拓?fù)?/h2>
發(fā)布時(shí)間:2018-04-23 責(zé)任編輯:lina
【導(dǎo)讀】對于具有高能量密度的高成本效益電力電子系統(tǒng)的開發(fā)工作而言,其關(guān)鍵就是能源效率。一個(gè)行之有效的經(jīng)驗(yàn)法則是:只要能夠以更高的開關(guān)頻率進(jìn)行操作,如果減少功率損耗,成本也會(huì)下降,因?yàn)槔鋮s負(fù)載較少并且可以使用更緊湊的無源元件。有鑒于此,開發(fā)人員可以利用某些技術(shù)顯著降低功率轉(zhuǎn)換器的開關(guān)損耗,從而降低成本。
逆變器是每個(gè)光伏系統(tǒng)的重要組成部分,其工作是將直流電壓轉(zhuǎn)換成交流電壓。功率晶體管的開關(guān)損耗對其效率影響很大。
必須使用正確的電路拓?fù)浜驼_的組件選擇,才可以實(shí)現(xiàn)理想的效率。為了提高效率,逆變器正在增加使用寬帶隙材料制成的晶體管,例如GaN或SiC。問題在于:這些技術(shù)比使用硅基組件昂貴得多。
因此,具有成本效益的系統(tǒng)需要進(jìn)行電路設(shè)計(jì)創(chuàng)新,在使用硅基組件的同時(shí)實(shí)現(xiàn)最大程度的效率。
優(yōu)化效率:半橋示例
半橋示例說明了如何通過顯著降低開關(guān)損耗來優(yōu)化逆變器的效率,它包括檢查從阻斷高邊開關(guān)晶體管的續(xù)流二極管到低邊開關(guān)晶體管(圖1)的電流換向。
除了電阻損耗以外,開關(guān)損耗由兩種損耗機(jī)制決定:首先是存儲(chǔ)在續(xù)流二極管中的反向恢復(fù)電荷(Qrr),它導(dǎo)致激活的低邊開關(guān)晶體管導(dǎo)通出現(xiàn)電流峰值;其次是對阻塞高邊開關(guān)晶體管的輸出電容(COSS)進(jìn)行再充電時(shí)所流動(dòng)的充電電流峰值。
同步反向阻斷(SRB)串聯(lián)第二開關(guān)晶體管Q2以阻斷開關(guān)晶體管Q1的續(xù)流二極管中的反向電流。Q2的激活與Q1同步。反向電流通過并聯(lián)的碳化硅(SiC)肖特基二極管,該二極管具有高擊穿電壓和極低的反向恢復(fù)電荷,這大大降低了Qrr對開關(guān)損耗的影響。Q2的續(xù)流二極管的極性確保晶體管不能產(chǎn)生高電壓,因此,低介電強(qiáng)度(60 V)的型款就足夠了。
圖1:開關(guān)半橋時(shí)的電流換向和損耗機(jī)制
來源:東芝
使用高級SRB (A-SRB),通過采用較低的電壓去Q1進(jìn)行預(yù)充電,大幅降低Q1的輸出電容的充電所造成的損失。輸出電容COSS強(qiáng)烈依賴于漏源電壓VDS。當(dāng)VDS從0V增加到大約40V時(shí),電容減少了例如大約100倍。
在導(dǎo)通期間,該電壓依賴性導(dǎo)致?lián)p耗誘導(dǎo)的充電電流的主要部分流過Q1的低VDS。然而,Q1兩端的低電壓意味著半橋?qū)ǖ牡投司w管有著高電壓導(dǎo)通。由于充電電流峰值,導(dǎo)致晶體管的導(dǎo)通損耗很高。
如果Q1的COSS被預(yù)充電到40V,例如,在半橋的低側(cè)開關(guān)晶體管導(dǎo)通之前,那么大部分充電電流不流過該晶體管導(dǎo)通,因此不會(huì)帶來導(dǎo)通虧損。預(yù)充電由IC柵極驅(qū)動(dòng)器中的電荷泵所產(chǎn)生的附加電壓源執(zhí)行。
圖2示出了用于減少半橋開關(guān)損耗的技術(shù)。實(shí)際的開關(guān)晶體管(Q1)是一個(gè)具有最大反向電壓(例如650V)的高壓超級結(jié)DTMOS IV。與Q1串聯(lián)連接的Q2輔助晶體管是一個(gè)低壓超級結(jié)UMOS VIII,其反向電壓為60 V。其中所使用的續(xù)流二極管是具有極低反向恢復(fù)電荷的SiC肖特基二極管。
這個(gè)特殊的電路拓?fù)溆梢粋€(gè)專用的IC T1HZ1F驅(qū)動(dòng)器來激活。該IC使用PWM輸入信號來產(chǎn)生晶體管柵極和充電脈沖所需的全部控制信號,以對Q1的輸出電容進(jìn)行預(yù)充電。
圖2:A-SRB電路拓?fù)涞慕M件
來源:東芝
圖3:減少半橋開關(guān)損耗的技術(shù)
來源:東芝
東芝開發(fā)的A-SRB技術(shù)顯著降低了開關(guān)損耗,適用于光伏逆變器、DC / DC轉(zhuǎn)換器、功率因數(shù)校正(PFC)和驅(qū)動(dòng)控制等一系列應(yīng)用,圖3顯示了減少半橋開關(guān)損耗的技術(shù)。為了演示A-SRB技術(shù)的有效性,分別使用和不使用A-SRB進(jìn)行逆變橋(H4拓?fù)?的SPICE仿真。
圖4顯示了借助A-SRB實(shí)現(xiàn)雙極性調(diào)制的各種輸出功率和開關(guān)頻率的效率提升,使用具有低RDS(on) (100 A, 600 V)的東芝DTMOS IV作為開關(guān)晶體管。對于高開關(guān)頻率,效率增益最為明顯,因?yàn)锳-SRB降低了開關(guān)損耗,這個(gè)例子中的最大效率增益約為6%。
圖4:使用A-SRB來提高效率
來源:東芝
該系統(tǒng)的主要部分是具有A-SRB功能的逆變橋,它可根據(jù)額定功率用于各種實(shí)施方案。對于最大輸入功率大約為300 W的模塊逆變器,東芝提供了T1JM4模塊解決方案。該模塊集成了一個(gè)完整的半橋,包括具有A-SRB功能的柵極驅(qū)動(dòng)器、開關(guān)晶體管和SiC肖特基二極管。市場上提供與開關(guān)元件相結(jié)合的分立柵極驅(qū)動(dòng)器套件,可用于具有高達(dá)大約5kW的更高輸入功率的光伏逆變器。
結(jié)論
要優(yōu)化電力電子系統(tǒng)的成本,便要有效解決相關(guān)的損耗?;诔墒旃杓夹g(shù)的智能功率損耗管理功能可以實(shí)現(xiàn)具有更高功率密度和能源效率的高成本效益系統(tǒng)。
東芝的A-SRB技術(shù)確保了顯著的效率提升。除了光伏逆變器之外,它也適用于電力電子行業(yè)中的各種其它應(yīng)用,例如用于DC / DC轉(zhuǎn)換器、無功功率補(bǔ)償和電機(jī)驅(qū)動(dòng)。
推薦閱讀:
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖