你的位置:首頁(yè) > 電源管理 > 正文

電源設(shè)計(jì)技巧十例:多相數(shù)字電源解決方案應(yīng)對(duì)挑戰(zhàn)

發(fā)布時(shí)間:2013-08-03 責(zé)任編輯:eliane

【導(dǎo)讀】當(dāng)前的處理器、圖像及存儲(chǔ)系統(tǒng)均使用多相電源解決方案,管理多相電源系統(tǒng)存在一些其自身特有的問(wèn)題,包括輕負(fù)載效率和系統(tǒng)冗余的切相,以及系統(tǒng)壽命的相位電流平衡。在傳統(tǒng)模擬電源中實(shí)施這些功能會(huì)比較困難,然而使用一個(gè)數(shù)字控制器則可以很輕松地完成這些任務(wù)。

電源設(shè)計(jì)技巧十例之一:為電源選擇最佳工作頻率
電源設(shè)計(jì)技巧十例之二:如何解決電源噪聲
電源設(shè)計(jì)技巧十例之三:多相升壓轉(zhuǎn)換器改裝
電源設(shè)計(jì)技巧十例之四:DPPM電池充電器
電源設(shè)計(jì)技巧十例之五:電池電量監(jiān)測(cè)計(jì)提供精確電量值
電源設(shè)計(jì)技巧十例之六:相機(jī)閃光燈電容充電器設(shè)計(jì)
電源設(shè)計(jì)技巧十例之七:驅(qū)動(dòng)白光 LED 的解決方案對(duì)比

所面臨的挑戰(zhàn)

當(dāng)前的處理器、圖像及存儲(chǔ)系統(tǒng)均使用多相電源解決方案。這些多相解決方案可提供一個(gè)極高開(kāi)關(guān)頻率轉(zhuǎn)換器的響應(yīng)及調(diào)節(jié)性能,同時(shí)以一個(gè)更加適度的頻率上單獨(dú)地進(jìn)行開(kāi)關(guān)。對(duì)單通道降壓轉(zhuǎn)換器而言,它們還可以提供比實(shí)際更高的輸出電流。多相電源的優(yōu)勢(shì)來(lái)自于相位交錯(cuò)。通過(guò)以統(tǒng)一的時(shí)間間隔進(jìn)行相位交錯(cuò)(例如:在一款三相交錯(cuò)轉(zhuǎn)換器中以120° 的時(shí)間間隔進(jìn)行交錯(cuò)),其本身單個(gè)相位固有的輸出紋波被其它相位降至平均水平,從而總體輸出紋波就被降低了。這樣使用更低的脈寬調(diào)制開(kāi)關(guān)頻率,就可以實(shí)現(xiàn)給定輸出紋波設(shè)計(jì)的目標(biāo),與此同時(shí)通過(guò)降低開(kāi)關(guān)損耗提高了效率。

管理多相電源系統(tǒng)存在一些其自身特有的問(wèn)題,包括輕負(fù)載效率和系統(tǒng)冗余的切相 (phase shedding),以及系統(tǒng)壽命的相位電流平衡。在傳統(tǒng)模擬電源中實(shí)施這些功能會(huì)比較困難,然而使用一個(gè)數(shù)字控制器則可以很輕松地完成這些任務(wù)。在該案例研究中,引入了一款數(shù)字電源解決方案,其具有多相同步降壓轉(zhuǎn)換器的優(yōu)點(diǎn),同時(shí)可以運(yùn)用數(shù)字方法關(guān)閉電壓控制環(huán)路,并且對(duì)不同負(fù)載和散熱條件下的相位進(jìn)行管理,以獲得最佳電源性能。

解決方案

這種系統(tǒng)由多達(dá) 6 個(gè)交錯(cuò)式同步降壓轉(zhuǎn)換器組成,這些轉(zhuǎn)換器均由一個(gè)單微處理器控制,如圖 1 所示。

圖1:數(shù)控多相交錯(cuò)式同步降壓
圖1:數(shù)控多相交錯(cuò)式同步降壓

TI 推出的 32 位 TMS320F2806 數(shù)字信號(hào)控制器 (DSC) 運(yùn)行在 100 MHz 頻率下,并且以電源應(yīng)用為目標(biāo)。在本例中,其在軟件中實(shí)施電壓模式控制,該軟件使用一個(gè)在 PWM 開(kāi)關(guān)頻率上進(jìn)行采樣的單通道 2 極點(diǎn) 2 零點(diǎn)數(shù)字補(bǔ)償器。隨后產(chǎn)生的占空比值將被傳給每一個(gè)降壓相(所有為實(shí)現(xiàn)相位平衡所作的占空比調(diào)節(jié)除外)。通過(guò)使用片上 12 位模數(shù)轉(zhuǎn)換器 (ADC) 獲得系統(tǒng)輸出電壓反饋。MOSFET 溫度在整個(gè) ADC 中均為可用,以實(shí)現(xiàn)監(jiān)控的目的,并且片上內(nèi)部集成電路 (I2C) 端口提供了對(duì) PMBus通信的支持。針對(duì)同步降壓應(yīng)用專門(mén)設(shè)計(jì)了一款 UCD7230 柵極驅(qū)動(dòng)器,從而提供了采用 TI TrueDrive輸出架構(gòu)的雙通道 4-A MOSFET 驅(qū)動(dòng)器、周期性電流限制以及一個(gè)內(nèi)置低失調(diào)、高增益、差分電流傳感放大器。

切相和增相

切相提供了一種提高電源效率和可靠性的方法。在輕負(fù)載條件下,動(dòng)態(tài)地減少運(yùn)行相位的數(shù)量通常會(huì)帶來(lái)效率的提高。當(dāng)負(fù)載需求增加時(shí),一個(gè)切相可以被重新激活。類似地,通過(guò)重新平衡各剩余相位之間的交錯(cuò),切除一個(gè)失效的相位或者一個(gè)運(yùn)行在邊界狀態(tài)以外的相位,有助于維持系統(tǒng)的性能。在那些需要極高可靠性的應(yīng)用中,一個(gè)備用相位可以被帶上線以取代失效的相位,也就是 N+1 冗余設(shè)計(jì)。不考慮切除一個(gè)相位的原因,剩余相位(或者在 N+1 冗余設(shè)計(jì)中增加相位)的交錯(cuò)角應(yīng)該重新調(diào)整,以維持最佳性能。例如,從一個(gè)三相 120° 交錯(cuò)式轉(zhuǎn)換器中切除一個(gè)相位就應(yīng)該將兩個(gè)相位分離隔開(kāi) 180°。

TMS320F2806 控制器的 PWM 元件均支持軟件同步及相位控制。每一個(gè) PWM 輸出均具有一個(gè)相位同步寄存器,它將其計(jì)數(shù)值與首個(gè) PWM 輸出的計(jì)數(shù)值發(fā)生偏移。這就允許所有交錯(cuò)式降壓相位的相位角不僅僅可以在系統(tǒng)初始化期間被靜態(tài)地配置,而且還可以在系統(tǒng)運(yùn)行期間被動(dòng)態(tài)地重新調(diào)整。
[page]
圖 2a 顯示了一款 120° 交錯(cuò)式(條件:10V 輸入、2V 輸出、3A 負(fù)載及300 kHz PWM 開(kāi)關(guān))PWM 結(jié)構(gòu)的三相交錯(cuò)式降壓轉(zhuǎn)換器的示波器屏幕采集圖。示波器通道 1 至 3 顯示的是單個(gè)相位電壓,而通道 4 顯示的是交錯(cuò)式輸出電壓(所有示波器通道均為 AC 耦合)。通過(guò)所有運(yùn)行中的三個(gè)相位,可以得出該輸出紋波為 4.9 mV(輸出電壓的 0.25%)。在沒(méi)有調(diào)整兩個(gè)剩余相位(見(jiàn)圖 2b)角的情況下,切除相位 2 會(huì)引起輸出紋波增加 86%,即為9.1 mV。為了獲得 180° 交錯(cuò)(見(jiàn)圖 2c),對(duì)兩個(gè)剩余相位進(jìn)行軟件調(diào)整以后,該紋波減少至 7.9 mV。在仍然比初始值大的同時(shí)(因?yàn)橐粋€(gè)兩相位系統(tǒng)無(wú)法獲得如一個(gè)三相系統(tǒng)一樣的低紋波),其比未被調(diào)整的剩余相位角提高了13%。

圖 2a 三相交錯(cuò)式同步降壓輸出
圖2a:三相交錯(cuò)式同步降壓輸出
圖2b:在 120° 交錯(cuò)時(shí),切除相位 2,保留相位 1 和相位 3
圖2b:在 120° 交錯(cuò)時(shí),切除相位 2,保留相位 1 和相位 3
圖2c:對(duì)相位 1 和相位 3 進(jìn)行調(diào)整以實(shí)現(xiàn)180°交錯(cuò)
圖2c:對(duì)相位 1 和相位 3 進(jìn)行調(diào)整以實(shí)現(xiàn)180°交錯(cuò)
相位電流平衡

為了最佳化電源組件可靠性和使用壽命,使多相系統(tǒng)中的每一個(gè)相位都等量地分擔(dān)電源負(fù)荷是值得的。由于電源開(kāi)關(guān)和電感的組件間的不同,以及電路板布局和散熱的非對(duì)稱性,因此流經(jīng)相位的電流是不一樣的?;酒胶夥椒òy(cè)量相位電流,以及對(duì)每一個(gè)相位要求的 PWM 占空比進(jìn)行單獨(dú)地調(diào)節(jié),以對(duì)電流進(jìn)行平衡。電流非均衡動(dòng)態(tài)十分緩慢,因而平衡環(huán)路的采樣率可以較低,差不多可以是幾十分之幾秒,甚至是幾秒。因此,微處理器上額外的計(jì)算負(fù)擔(dān)可以被忽略不計(jì)。為了減少傳感器噪聲的影響,對(duì)平衡環(huán)路速率電流讀取進(jìn)行過(guò)采樣,并隨著時(shí)間的變化平均每一個(gè)相位的電流測(cè)量。簡(jiǎn)單低增益完整行為“僅”控制算法通常被用于關(guān)閉平衡環(huán)路。在使用平均相位電流作為參考的每一個(gè)環(huán)路反復(fù)過(guò)程中,可以在每一個(gè)相位上執(zhí)行平衡。另一種方法是,有時(shí)只有將在那個(gè)時(shí)刻測(cè)量出的最高和最低電流相位彼此平衡,才能達(dá)到相位電流平衡。無(wú)論使用哪一種方法,所有相位電流最終都將匯聚到相同值上。

PWM 精度是進(jìn)行相位電流平衡時(shí)通常會(huì)碰到的一個(gè)問(wèn)題。將一個(gè) 10V 輸入看作是由一個(gè) 100 MHz PWM 時(shí)鐘的 300 kHz PWM 驅(qū)動(dòng)的 2V 輸出同步降壓轉(zhuǎn)換器。該降壓輸出上的 PWM 精度將會(huì)是 30 mV,或者等同于 2V 輸出的 1.5%。一般而言,相比達(dá)到相位平衡和避免平衡控制環(huán)路極限循環(huán)期 (limit cycling) 所需要的較好占空比調(diào)節(jié),這樣的粒度將會(huì)大一個(gè)甚至是兩個(gè)數(shù)量級(jí)。F2806 控制器為這一問(wèn)題提供了一種解決方案,并且別具一格地增強(qiáng)了 PWM 模塊的高精度。這種高精度 PWM 提供了 ~150 ps 的邊緣定位。這就相當(dāng)于為上述降壓實(shí)例提供 0.45 mV 的輸出精度,或者 0.02% 的 2V 輸出。這種解決方案可提供高精度以及較好的相位電流平衡功能。

結(jié)論

本文描述了一款數(shù)控多相交錯(cuò)式 DC/DC 降壓系統(tǒng),其可實(shí)現(xiàn)電壓模式調(diào)節(jié)控制,并具有切相及增相和多相電流平衡的特點(diǎn)。使用傳統(tǒng)模擬控制器來(lái)實(shí)施這些特性將會(huì)十分具有挑戰(zhàn)性,而使用一款基于微處理器的數(shù)字控制器便可以輕松地完成這些任務(wù)。F2806 數(shù)字信號(hào)控制器與 UCD7230 柵極驅(qū)動(dòng)及電流傳感放大器的完美結(jié)合提供了一款完整的信號(hào)控制解決方案,并具有單機(jī)運(yùn)行的片上閃存、同步高精度 PWM 模塊、測(cè)量反饋信號(hào)的 ADC 以及 PMBus 通信功能。

相關(guān)閱讀:
開(kāi)關(guān)電源中的過(guò)流保護(hù)電路如何設(shè)計(jì)?
http://hunt-properties.com/power-art/80019607
淺析幾種新型特種集成開(kāi)關(guān)電源設(shè)計(jì)實(shí)例
http://hunt-properties.com/power-art/80019823
如何利用智能MOSFET提升數(shù)字電源性能?
http://hunt-properties.com/power-art/80018512
淺談高級(jí)配置與電源接口的電源管理
http://hunt-properties.com/power-art/80019643
要采購(gòu)轉(zhuǎn)換器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉