你的位置:首頁 > EMC安規(guī) > 正文
磁滯回線如何發(fā)力,使反激電源達(dá)到90%效率
發(fā)布時間:2015-02-15 責(zé)任編輯:sherryyu
【導(dǎo)讀】前文中對二極管和電容的實踐 進(jìn)行了介紹,在本篇文章當(dāng)中將為大家?guī)黻P(guān)于磁滯回線的相關(guān)分析。這一部分較為重要,因為其直接反映了實際操作和書本上知識的區(qū)別,也是在對變壓器進(jìn)行講解所需的鋪墊。
對于電源老鳥來說,接觸的設(shè)計多了,就會形成一套自己的獨(dú)特手法和習(xí)慣,隨著經(jīng)驗的增長,這將形成一種良性的循環(huán)。而對于新手來說,尋找到一個合適的切入點(diǎn)都是比較困難的,更談不上形成這種良性的循換了。但是這個阻礙新手進(jìn)步的問題將被解決。本系列文章以反激電源設(shè)計為切入點(diǎn),深究這種電源的設(shè)計手法并對其中的原理進(jìn)行細(xì)致的講解,對良好的設(shè)計習(xí)慣進(jìn)行培養(yǎng)。
前文中對二極管和電容的實踐 進(jìn)行了介紹,在本篇文章當(dāng)中將為大家?guī)黻P(guān)于磁滯回線的相關(guān)分析。這一部分較為重要,因為其直接反映了實際操作和書本上知識的區(qū)別,也是在對變壓器進(jìn)行講解所需的鋪墊。
變壓器是電源板的靈魂器件,變壓器設(shè)計不好牽一發(fā)動全身,整個板子都不理想。變壓器工作的時候受控于初級,也受控于次級。因此MOS、變壓器、肖特基都是互相影響的,也造成變壓器不是一次都能設(shè)計好的。為了后面的推算,所以得初算個變壓器出來。先來看看磁材的一些細(xì)節(jié)。
這個是做變壓器最基本的公式根據(jù),但是表示的不對,應(yīng)該表示為B=(磁導(dǎo)率/磁路)*(NI);
NI就是安匝數(shù),電激發(fā)出磁的部分。
磁導(dǎo)率/磁路:磁路相關(guān)的磁通密度。
磁通密度
100A/m安匝波形和磁通密度疊加圖:
圖1
[page]
根據(jù)圖形,磁滯回線按照正弦波安匝數(shù)來變化的,也就是磁滯回線的變化實際上是安匝正弦變化規(guī)律,這個磁滯回線是用來做工頻變壓器的年代誕生的,也適合于正弦波變壓器,而開關(guān)電源是不同斜率的三角波組成,這個遲滯回線看不出開關(guān)電源中磁芯中磁通的變化的規(guī)律。
圖2
圖3 同斜率不同幅度的磁滯回線
用三角波仿真了下磁芯,磁滯回線方正了很多,也不會因為正弦規(guī)律產(chǎn)生嚴(yán)重的拖尾效應(yīng)。圖2是同頻率不同幅度。圖3同斜率不同幅度的。
圖4
現(xiàn)在來看看同是1000A/m的安匝在50K和5K情況下磁滯回線。仔細(xì)觀察安匝和磁滯回線的關(guān)系,就能明顯看出損耗和磁滯回線的頭怎么來的。
圖5
圖6
以上都是連續(xù)的安匝變化,電源電路中安匝是突變的,比如反激式mos開啟和mos關(guān)斷的瞬間,電流方向進(jìn)行了突變,波形如圖6所示。(安匝波形就是電流波形)
圖7
[page]
這個時候磁滯回線變成了樣子?注意看100A/m,-100A/m,50A/m,-50A/m 這幾個轉(zhuǎn)折點(diǎn)。
圖8
上面的磁滯回線表達(dá)不準(zhǔn)確,電源工作在一個離散狀態(tài),應(yīng)該把磁通保持的線刪掉,電源磁芯就工作在這個狀態(tài),CCM模式。中間無線的地方是安匝突變,就是翻轉(zhuǎn)點(diǎn)。另外電源也沒有了起始線,大家都應(yīng)該明白電源是如何進(jìn)入穩(wěn)定態(tài)的。
圖9
再來看圖9中DCM與BCM磁滯回線。
[page]
圖10
再來看看圖10中磁通密度和磁導(dǎo)率的關(guān)系。這個磁力線是沒有初始磁導(dǎo)率的。數(shù)據(jù)應(yīng)該沒有調(diào)對。
上面DCM和CCM磁滯回線的仿真是基于安匝源,但是反激式是初級安匝給磁芯儲能,mos關(guān)斷后,有磁動勢反轉(zhuǎn)磁力線,應(yīng)該有些不同,這個后面看下能用反激式拓補(bǔ)結(jié)構(gòu)仿真出來么。
經(jīng)過上面仿真可以得出:
1、書本上以及規(guī)格書上所給出的磁芯數(shù)據(jù)是基于正弦波的,給出的參數(shù)也是正弦波的,對于開關(guān)電源,有些參數(shù)不是精準(zhǔn)的,比如頻率特性,開關(guān)電源能和磁滯回線對應(yīng)起來的是斜率。
2、仿真CCM模式,磁滯回線上會出現(xiàn)兩個安匝跳變位置,但是磁通密度并不能跳變,而是通過下降來釋放能量。
3、DCM模式有一個安匝跳變位置,相應(yīng)mos開啟端位跳變,相應(yīng)磁滯回線能和上面用三角波仿真的形狀對應(yīng)起來。
4、電源中調(diào)試的時候,把一款產(chǎn)品做成低壓CCM高壓DCM,在DCM的時候肖特基翻轉(zhuǎn)的諧波比CCM小,可見安匝跳變的時候,磁力線也會產(chǎn)生一種波形震動。
這一節(jié)主要對磁滯回線進(jìn)行了詳細(xì)的對比分析,主要是為了能夠讓大家看到實際操作和書本知識的區(qū)別,同時為變壓器設(shè)計的講解做好準(zhǔn)備,希望大家能夠從這篇至關(guān)重要的文章當(dāng)中吸收到書本中學(xué)習(xí)不到的知識。
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- TCL實業(yè)攬獲多項CES 2025科技大獎,蟬聯(lián)全球消費(fèi)電子品牌TOP10
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器