你的位置:首頁 > 電路保護(hù) > 正文

如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)

發(fā)布時(shí)間:2021-08-27 責(zé)任編輯:lina

【導(dǎo)讀】緩沖電路參數(shù)值直接影響GTO的關(guān)斷性能及整個(gè)GTO逆變器的工作性能。因此如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù),便成為重要的問題。
  
1 引言
 
緩沖電路參數(shù)值直接影響GTO的關(guān)斷性能及整個(gè)GTO逆變器的工作性能。因此如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù),便成為重要的問題。
 
本文通過對(duì)GTO關(guān)斷過程中陽極電流與陽極電壓波形的分析,提出并論證了GTO陽極電流波形與緩沖電路參數(shù)無關(guān)、緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)的論點(diǎn)。在此基礎(chǔ)上,提出了一種簡(jiǎn)便、實(shí)用的緩沖電路參數(shù)優(yōu)化設(shè)計(jì)方案??筛鶕?jù)對(duì)GTO裝置性能的具體要求確定GTO緩沖電路元件  優(yōu)參數(shù)。在對(duì)GTO關(guān)斷過程中陽極電壓及關(guān)斷功耗波形進(jìn)行仿真時(shí),為提高仿真,采用了實(shí)測(cè)的陽極關(guān)斷電流波形。并據(jù)此推導(dǎo)出關(guān)斷功耗波形。仿真結(jié)果與實(shí)驗(yàn)波形比較,誤差極小。本文提出了一種以“綜合指標(biāo)”作為目標(biāo)函數(shù)的緩沖電路參數(shù)尋優(yōu)方案。
 
2 利用陽極電流波形對(duì)陽極電壓波形仿真的前提條件
 
GTO緩沖電路可等效為圖1所示電路。如要利用實(shí)測(cè)的陽極電流對(duì)陽極電壓進(jìn)行仿真,首先需要證明以下兩個(gè)條件成立:
 
(1)GTO陽極電流波形與緩沖電路參數(shù)無關(guān);
 
(2)緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)。
 
GTO緩沖電路示意圖
 
如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)
圖1 GTO緩沖電路示意圖
 
2.1 GTO陽極電流波形與緩沖電路參數(shù)無關(guān)
 
圖2為GTO關(guān)斷時(shí)的陽極電流波形。整個(gè)過程可分為3個(gè)階段:即存儲(chǔ)時(shí)間段、下降時(shí)間段及拖尾時(shí)間段。
 
GTO陽極關(guān)斷電流波形示意圖
 
如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)
圖2 GTO陽極關(guān)斷電流波形示意圖
 
在存儲(chǔ)時(shí)間段及下降時(shí)間段中,存儲(chǔ)時(shí)間ts及下降時(shí)間tf值僅取決于門極抽取能力及GTO內(nèi)部結(jié)構(gòu),而與緩沖電路參數(shù)無關(guān)。此兩段的陽極電流波形也與緩沖電路參數(shù)無關(guān)。
 
在拖尾時(shí)間段,拖尾電流基本上由下降時(shí)間段的陽極電流波形及結(jié)溫決定,與緩沖電路參數(shù)無關(guān)。
 
圖3中8條曲線是CS=2,3,4,5μF時(shí)的陽極電流及陽極電壓波形。可見,在緩沖電路參數(shù)變化后,陽極電壓波形變化較大,而4條陽極電流曲線基本上完全重合。由此實(shí)驗(yàn)可驗(yàn)證以上分析的正確性。
 
緩沖電路參數(shù)改變后的陽極電流
 
如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)
圖3 緩沖電路參數(shù)改變后的陽極電流、陽極電壓波形
 
圖中曲線(1),(2),(3),(4)為緩沖電路參數(shù)改變后的實(shí)測(cè)陽極電壓波形;曲線(5),(6),(7),(8)為緩沖電路參數(shù)改變后的實(shí)測(cè)陽極電流波形。
 
2.2 緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)
 
儲(chǔ)存電荷Qr及恢復(fù)時(shí)間trr是緩沖二極管反向恢復(fù)過程中兩個(gè)重要參數(shù)。在分析GTO關(guān)斷過程時(shí),可近似認(rèn)為Qr,trr為常量。由圖4可證明這一點(diǎn)。圖4是改變緩沖電阻支路分布電感后測(cè)得的緩沖電阻支路電流及緩沖二極管支路電流??梢?,在Lrs改變后,irs變化很大,而ids幾乎不變。即可認(rèn)為trr只與緩沖二極管本身的特性有關(guān)。
 
緩沖二極管恢復(fù)反向阻斷能力后的ids
 
  如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)
圖4 緩沖二極管恢復(fù)反向阻斷能力后的ids,irs波形
 
圖中曲線(1),(2),(3)為Lrs改變前、后的實(shí)測(cè)緩沖電阻支路電流波形。
 
曲線(4),(5),(6)為Lrs改變前、后的實(shí)測(cè)緩沖二極管支路電流波形;
 
如圖5所示的緩沖二極管反向恢復(fù)特性曲線,t》t5后的緩沖二極管上電流近似認(rèn)為是1條二次曲線,可以較好地說明問題。曲線方程為:公式(1)公式(2)
 
式中trr—緩沖二極管恢復(fù)時(shí)間;
 
t5—ids=Ism的時(shí)間;
 
Ido—t=t7時(shí)緩沖二極管的電流值。
 
緩沖二極管的反向恢復(fù)特性
 
3 陽極電壓波形仿真
 
利用GTO陽極電壓與陽極電流間的數(shù)學(xué)模型,使用MATLAB語言進(jìn)行計(jì)算機(jī)仿真,可由實(shí)測(cè)的陽極電流波形及緩沖電路參數(shù)得到陽極電壓的仿真波形。仿真波形與實(shí)測(cè)波形相比,誤差極小。如圖6所示,圖中曲線為CS=2μF及5μF條件下實(shí)際測(cè)得的陽極電壓波形及相應(yīng)的仿真波形??梢姡抡?nbsp; 可滿足尋優(yōu)要求。
 
 
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉