【導(dǎo)讀】我曾設(shè)計(jì)過一個精密電壓表的輸入,需要一個亞皮安輸入單位增益放大器/緩沖器,其低頻噪聲小于1μV p-p,失調(diào)電壓低至大約100μV,非線性誤差 小于1 ppm。它還需要在音頻和60 Hz頻率下具有非常低的交流失真,以便利用不斷增強(qiáng)的ADC分辨率。
先把問題放出來:能否讓低壓放大器自舉來獲得高壓緩沖器?
答案當(dāng)然是可以的!您可以采用具有出色輸入特性的運(yùn)算放大器,并進(jìn)一步提高其性能,使其電壓范圍、增益精度、壓擺率和失真性能均優(yōu)于原來的運(yùn)算放大器。
我曾設(shè)計(jì)過一個精密電壓表的輸入,需要一個亞皮安輸入單位增益放大器/緩沖器,其低頻噪聲小于1μV p-p,失調(diào)電壓低至大約100μV,非線性誤差 小于1 ppm。它還需要在音頻和60 Hz頻率下具有非常低的交流失真,以便利用不斷增強(qiáng)的ADC分辨率。這足夠雄心勃勃,但它同時需要使用±50V電源緩沖±40 V信號。緩沖器輸入連接到高阻 抗分壓器,或直接連接到外部信號。因此,它還必須能夠承受靜電放電和過壓輸入的沖擊。
可用的亞皮安偏置電流運(yùn)算放大器并不多。可堪使用的器件常常被稱為靜電計(jì)級放大器,偏置電流低至數(shù)十飛安。遺憾的是,這些靜電計(jì)放大器的低頻電壓噪聲(0.1Hz到10Hz)為幾微伏(峰峰值)。此外,其輸入失調(diào)電壓和失調(diào)溫度系數(shù)一般也不符合要求。其共模抑制比(CMRR)和開環(huán)增益不夠好,難以支持1 ppm線性度。最后,沒有一款靜電計(jì)能夠承受高電源電壓。
LTC6240 系列提供0.25 pA偏置電流(典型值)和0.55μV p-p低頻噪聲。這對于輸入緩沖器來說已經(jīng)足夠好了,但該器件僅支持最高12 V的電源。我們將不得不在放大器周圍添加電路以使其適應(yīng)更高的電壓。
設(shè)計(jì)方法
圖1顯示了自舉放大器的原理示意圖。
圖1. 基本自舉電源電路拓?fù)?/div>
LTC6240由Vp(通過增益為+1的緩沖放大器保持輸出加5 V的值)和Vm(由另一個緩沖器驅(qū)動而保持輸出減5 V的值)供電。
由于電源總是跟隨輸入信號(由LTC6240的輸出緩沖),因此理想情況下根本沒有共模輸入誤差。即使是平庸的CMRR也通過自舉提升至少30 dB。該30 dB值是由Vp和Vm緩沖器的有限增益精度導(dǎo)致的。
LTC6240的開環(huán)增益也得到類似的提升。當(dāng)內(nèi)部增益節(jié)點(diǎn)和電源軌之間存在晶體管輸出阻抗時,放大器電路會發(fā)生增益受限的情況。由于電源被自舉到輸出,所以很少有信號電流流過上述阻抗,而且開環(huán)增益的增加量與CMRR的提升量相似。但是,輸出負(fù)載仍可能會限制開環(huán)增益。
也許不那么明顯,但電路整體壓擺率也被自舉提高。通常,它受限于LTC6240內(nèi)部靜態(tài)電流和以電源為基準(zhǔn)的補(bǔ)償電容。當(dāng)電源追隨輸入和輸出時,很少有動態(tài)電流流入這些電容,放大器不會進(jìn)入有限壓擺率狀態(tài)。緩沖放大器最終會限制整體壓擺率。
高壓電源Vhvp和Vhvm可能有干擾,但緩沖器輸出會在很大程度上抑制干擾,LTC6240的電源抑制比(PSRR)將大大增強(qiáng)。
所以,這很棒;通過自舉電源,緩沖器在多個方面得到改善??赡軙霈F(xiàn)什么問題?圖1所示電路幾乎肯定會振蕩??紤]電源引腳行為的最佳方法是將其視為反饋環(huán)路的一部分:輸出引腳電壓乘以緩沖放大器頻率響應(yīng),然后將乘以1/PSRR,加到輸入端,最后乘以開環(huán)增益成為輸出,如此循環(huán)往復(fù)。圖2a顯示了PSRR隨頻率的變化。
圖2. (a) LTC6240的PSRR,(b) LTC6240的開環(huán)增益
我們在PSRR曲線中沒有獲得相位數(shù)據(jù),但假設(shè)它具有+90°相位。是的,這個+90°就像一個差異化因素。如圖2b所示,從低頻到100 kHz,開環(huán)增益具有-90°相位,之后該負(fù)值變得越來越大。緩沖器將具有有限頻率響應(yīng),并且也將表現(xiàn)出相位滯后。將環(huán)路中的所有相位滯后相加可確保在一些頻率下的反饋相位為0°或360°的倍數(shù)。如果在這些相位的電源環(huán)路增益大于1,振蕩就會發(fā)生。PSRR幅度下降到4 dB的低點(diǎn)(衰減 = -4 dB→ 增益 = 0.63,非dB),看起來環(huán)路可能永遠(yuǎn)不會有足夠的增益來發(fā)生振蕩。這很可能是錯誤的,因?yàn)镻SRR同時適用于Vp和Vs,其PSRR增益相加會使幅度超過1。此外,緩沖器可能會有一定的峰化,之后其增益在高頻發(fā)生滾降,從而將整體反饋幅度推高至1以上。我們還將看到,緩沖器必須驅(qū)動稍大的電容,并且會具有更多的相位滯后。無論如何,LTspice®中的電路仿真表明會發(fā)生大信號振蕩(LTC6240的頻率響應(yīng)和非線性體現(xiàn)在宏模型中)。
實(shí)際實(shí)現(xiàn)
圖3顯示了完整電路。
圖3. 完整電路
請注意,1000 pF旁路電容必須與LTC6240電源引腳緊密連接。運(yùn)算放大器有數(shù)十個內(nèi)部晶體管,在該放大器中,晶體管的Ft量級為GHz。它們常常以反饋方式彼此連接,除非安裝了旁路電容,否則它們可能在高交流阻抗電源下發(fā)生振蕩。1000 pF足以消除這些振蕩。我們還希望電源旁路電容遠(yuǎn)大于任何輸出負(fù)載電容,因?yàn)樵诟哳l時,負(fù)載電容上的電壓轉(zhuǎn)換會導(dǎo)致電流流向電源軌,并可能調(diào)制電源電壓,通過PSRR反饋引起振蕩。因此,旁路電容會降低頻率下的電源調(diào)制,相當(dāng)于降低從輸出到電源的反饋增益。
壓擺這些旁路電容會需要很大的電流,而且必須是雙向的。Q5和Q6是射極跟隨器,可以驅(qū)動旁路電容的壓擺電流。Q3和Q4是偏置二極管,用于設(shè)置Q5和Q6靜態(tài)電流。Q2為這些二極管和齊納二極管D1(實(shí)際上是并聯(lián)基準(zhǔn)電壓源IC)提供偏置電流,D1設(shè)置相對于輸出的正電源電壓。Q2的集電極是一個電流鏡的輸出,該電流鏡由高壓軌之間的R9偏置。如果電源電壓不是恒定值,可以用兩個電流源代替R9。
Q7至Q12形成與之前所述相當(dāng)?shù)腣m減電源驅(qū)動器。請注意齊納電壓的不匹配是有意為之的:Vp比輸入/輸出高5V,Vm比輸入/輸出低3V。這種不匹配使輸入電壓的中點(diǎn)位于LTC6240的電源限制輸入范圍以內(nèi),從而優(yōu)化壓擺波形。
通常,LTC6240的電源電流會消耗Q5的發(fā)射極電流,并基本上關(guān)閉Q6,所以Vp緩沖器輸出阻抗大部分是R3。因此,電源反饋Vp路徑的帶寬約為1/ (2π × 100 Ω × 0.001 µF) = 1.6 MHz。這保證了在10 MHz及以上的頻率(此時LTC6240的開環(huán)相位向振蕩發(fā)展),Vp環(huán)路增益遠(yuǎn)小于1。100Ω電阻還讓跟隨器Q5不必直接驅(qū)動1000 pF 電容。發(fā)射極跟隨器會有輸出電感,可能與容性負(fù)載發(fā)生諧振,引起振鈴甚至振蕩。
設(shè)計(jì)自舉在1.6 MHz以上的頻率會失敗后,我們將看到整體電路的完美行為在頻率超出大約100 kHz時會降級。如果輸出不能完全跟隨輸入,自舉的好處將會打折扣。帶Cin的Rin將帶寬限制在100 kHz,這是ADC跟隨緩沖器的系統(tǒng)抗混疊濾波器的一部分,它還會衰減無線電干擾和不支持的壓擺率。
該電路必須能夠承受任何不受限制的壓擺輸入信號或ESD,因此Rin也用于限制輸入故障電流。電阻有四個串聯(lián)段,以便分擔(dān)輸入過驅(qū),暫時承受1 kV的電壓。根據(jù)信號源和預(yù)期過載,可以減小輸入電阻。
LTC6240內(nèi)部有保護(hù)二極管,可將輸入過壓電流引導(dǎo)至Vp或Vm。允許進(jìn)入LTC6240輸入的最大故障電流為10 mA,但如果有周圍電路可以快速切斷輸入故障,則在短時間內(nèi)可以增加該電流。該電路的預(yù)期應(yīng)用中存在SPDT繼電器,當(dāng)未通電時,其將緩沖器的輸入連接到÷10網(wǎng)絡(luò)。通電后,繼電器直接連接輸入。因此,當(dāng)未通電時,緩沖器連接到遠(yuǎn)大于10 kΩ的源阻抗,故障電壓和電流降低的幅度與10 mA連續(xù)額定值相當(dāng)。應(yīng)用的輸入范圍為±400 V,故障容差為±1000 V。這只有在有兩個比較器的情況下才能安全地實(shí)現(xiàn),比較器檢測輸入過壓并快速釋放繼電器。這可以在1 ms至2 ms內(nèi)完成,允許100 mA瞬態(tài)輸入電流,此電流不會熔化LTC6240的保護(hù)二極管。
請注意,D3至D6用于將輸入過載電流引導(dǎo)至Vhvp或Vhvm電源,該電流此前已通過LTC6240導(dǎo)向Vp或Vm。這些電源可能無法吸收過載電流,因?yàn)橄鄬τ谡9╇姴僮?,該電流是向后流動的。我們將依靠足夠大的旁路電容來安全地保持電源電壓,同時等待繼電器開關(guān)減壓。對于100 mA過載,我們將需要100μF電容來使電源在2 ms內(nèi)的電壓變化保持在2 V以內(nèi)。
高壓信號源
當(dāng)測試實(shí)驗(yàn)室原型時,我意識到我沒有信號發(fā)生器來提供任何波形的足夠輸出電壓擺幅以激勵電路。我有可以產(chǎn)生最多±10 V p-p的各種波形的信號發(fā)生器?,F(xiàn)在需要設(shè)計(jì)一個可以清晰地再現(xiàn)大幅度波形的放大器。圖4顯示了一個電流反饋放大器(CFA)的高壓分立實(shí)現(xiàn)方案。
圖4. 高壓放大器
CFA(電流反饋型放大器)具有極高的壓擺率,帶寬通常也很寬(單位增益時)。不過因?yàn)槲覀兪褂玫氖歉邏壕w管,所以帶寬適中。與較低電壓類型相比,高壓晶體管具有更高的寄生電容和更低的 Fts。
這里有一些事項(xiàng)需要注意。電路本身沒有限流或限制功耗的功能,因此超過10mA的持續(xù)大負(fù)載電流會燒毀輸出級,甚至可能燒毀更多電路級。此外,最好不要在高壓電源上添加0.1μF以上的旁路電容。如果使用大電容,短路會引起焊接效應(yīng)。有鑒于此,我不得不在高壓電源上增加100μF旁路電容以抑制二次諧波失真。我用手上下?lián)u動實(shí)驗(yàn)室電源,以避免硬開啟和關(guān)閉。請注意,50V 電壓就會產(chǎn)生足夠的電流流過人體導(dǎo)致心臟停搏。最好將高壓電源的電流限值降至60 mA。50 V足夠高,需要警惕。
在圖4中,ADA4898 運(yùn)算放大器控制CFA,使其精度和失真受到控制。CFA一般具有高直流誤差,高精度建立時間較長。運(yùn)算放大器解決了這些問題。
CFA的正輸入為節(jié)點(diǎn)n25,負(fù)輸入為n5(是的,這是輸入)。Rff和Rgg本身將內(nèi)部CFA的增益設(shè)置為約27。這種高增益可以將運(yùn)算放大器輸出擺幅控制在±2 V。CFA可以設(shè)置為更高增益以進(jìn)一步減輕控制放大器的負(fù)擔(dān),但如此一來,CFA將損失帶寬,并且失真增加。總增益由Rf和Rg設(shè)置為20。Ctweak和Ctweak2配合Rf工作,從215 kHz以上的運(yùn)算放大器整體反饋中消除CFA的相位滯后,從而增強(qiáng)運(yùn)算放大器的穩(wěn)定性。
Tn13是CFA增益節(jié)點(diǎn),由涉及Q1/Q2/Q20和Q11/Q12/Q19的電流鏡驅(qū)動。
Q7/Q8/Q10/Q13形成輸出緩沖器,作為復(fù)合互補(bǔ)射極跟隨器。沒有限流電路——請勿將輸出短接到任何東西!
高壓放大器的CFA部分具有35 MHz的-3 dB帶寬,并且不會自行峰化。整體電路的-3 dB帶寬為33 MHz,但有8dB的峰化。通常,復(fù)合放大器設(shè)計(jì)的第二放大器的帶寬至少是輸入控制放大器帶寬的3倍以避免峰化,但我們無法獲得如此有利的比率。至少 8 dB峰值沒有高Q值,并且振鈴會相當(dāng)快地消失。在峰化頻率以下,目標(biāo)100 kHz信號再現(xiàn)得很好。在100 kHz且輸出為80 V p-p時,失真測量值為-82dBc;在100 kHz以下且輸出為32 V p-p時,失真降至-100 dBc。對于快速邊沿,方波響應(yīng)具有約60%的過沖;當(dāng)輸出壓擺率小于250 V/μs時,過沖很小或幾乎沒有過沖。最大壓擺率約為1900 V/μs。
測量設(shè)置
我們面對的是大信號,如何使用普通實(shí)驗(yàn)室設(shè)備來測量±40 V輸出?高壓放大器和高壓緩沖器的輸出都不應(yīng)超過10 mA,而且它們也不能穩(wěn)定地驅(qū)動40 pF負(fù)載。同軸電纜的電容率為27 pF/英尺,電容量太大。示波器÷10探針只有大約15 pF||10MΩ負(fù)載,因此耦合到示波器會沒問題。
對于失真測量,我們實(shí)驗(yàn)室的所有音頻分析儀都不能在100 kHz時達(dá)到-80 dBc,所以我們必須求助于頻譜分析儀。遺憾的是,頻譜分析儀只有50Ω輸入,這對我們的驅(qū)動電路來說太低。我的解決方案是將阻抗提高到50Ω(見圖5);也就是說,在信號和50Ω分析儀輸入之間放置一個5 kΩ分壓電阻,做成一個接近÷100的分壓器。重要的是,5 kΩ電阻在低頻信號下不會出現(xiàn)熱偏移, 因?yàn)檫@些偏移與 VOUT2相關(guān),會造成偶次諧波。我選擇將5個1kΩ、2 W電阻串聯(lián)起來制作Rdivider。2 W電阻具有約37°C/W的熱阻,5個1 kΩ電阻具有7.5°C/W的熱阻。在其上施加±40 V正弦波時,功耗為160 mW,電阻加熱將導(dǎo)致電阻的溫度升高7.5×0.16 = 1.2°C。電阻偏移大約為100 ppm /°C,因此在直流時會有120 ppm的偏移,或大約0.01%的非線性誤差及-80 dBc的失真。對于我們 的測量,這種精度怎么可能足夠?好消息是分壓器電阻的熱時間常數(shù)相當(dāng)大,我們預(yù)計(jì)在100 kHz周期的中部實(shí)際電阻偏移很小。諷刺的是,在較低頻率(可能1 kHz及以下)時失真更差。
由于分析儀輸入范圍有限,80 V p-p信號無論如何都必須衰減,但它仍然太大,無法獲得最佳頻譜分析儀性能。在無輔助的情況下,我們的分析儀只能提供-80 dBc失真,這是權(quán)衡利弊的結(jié)果,否則要么其噪聲會淹沒諧波,要么大輸入會造成額外的失真。解決辦法是在分析儀輸入端放置一個100 kHz的陷阱來消除基波幅度。當(dāng)信號少于幾毫伏(僅諧波)時,我們可以實(shí)現(xiàn)接近-120 dBc的測量范圍。圖5顯示了測試設(shè)置。
圖5. 失真測試設(shè)置
發(fā)生器通過一個低通濾波器(Linput和Cinput)驅(qū)動Rterm,濾波器衰減發(fā)生器的100 kHz諧波。失真由此改善到-113 dBc,低于要測量的電路。凈化后的信號由高壓放大器提升,并由緩沖器傳遞,緩沖器驅(qū)動分壓器。
電感由纏繞在大型線軸(用于功率E-I磁芯)上的磁線構(gòu)成。由于會增加失真,任何類型的磁芯材料都不能使用;必須使用氣繞。只需反復(fù)纏繞和測量。
Ltrap以磁場方式將諧波輻射到相鄰的松散無屏蔽線路(這是我常用的方法),因此我將陷阱元件放在一個帶有接地BNC插孔連接的餅干罐中。我們實(shí)驗(yàn)室中有餅干罐;我喜歡燒烤鍋,但任何屏蔽鋼質(zhì)箱都可以。
為了校準(zhǔn),我將兩個放大器替換為直通線,并記錄下二次到四次諧波頻率時從Rterm電壓到頻譜分析儀輸入的增益。在失真測試中測量諧波時,我使用所存儲的該頻率對應(yīng)增益來推斷緩沖器輸出端的諧波成分。我用一個示波器監(jiān)測緩沖器基頻輸出的幅度,計(jì)算歸一化諧波的有效值,然后除以基波幅度,得到整體失真。
結(jié)果
使用圖5所示設(shè)置,頻譜分析儀在70 V p-p和80 V p-p輸出時的失真為-81 dBc,在50 V p-p和60 V p-p輸出時的失真為-82 dBc,在 16 V p-p和32V p-p輸出時的失真為-86.5 dBc,頻率均為100 kHz。
然后測量直流線性度、增益精度和輸入范圍。圖6顯示了掃描輸入直流信號時緩沖器的輸入失調(diào)。
任何具有有用輸入特性的放大器都可以如上所述進(jìn)行自舉,從而配合高壓信號工作。超低輸入噪聲或超低失調(diào)放大器可以在數(shù)百伏下運(yùn)行。
圖6. 緩沖器的 VOS 與 VIN 的關(guān)系。Rl = 50 kΩ和∞。
萬用表難以在±40 V信號的背景下解析亞微伏變化,但由于這是一個緩沖器,我們可以簡單地將電壓表從輸入連接到輸出以找到偏移量,并使用一個敏感范圍。對于±40 V輸入,該萬用表的共模抑制小于1μV(該測試的輸入短路)。
曲線中的擾動是由低頻噪聲(尤其是熱擾動)引起的。有人在附近或空調(diào)就能導(dǎo)致氣流和熱變化,致使電路中出現(xiàn)微伏級的塞貝克和熱電偶電壓誤差。我沒有很好的屏蔽室,但我用一些衣服遮住電路以防止氣流影響。即便如此,結(jié)果仍有0.6μV rms的漂移。
在噪聲中,無負(fù)載(綠色)曲線表明增益誤差約為0.03 ppm。還算不賴。未自舉的LTC6240的標(biāo)稱增益誤差為5.6 ppm,CMRR誤差導(dǎo)致的最差情況增益誤差為100 ppm。當(dāng)加載50 kΩ(紫色)時,我們看到增益誤差為-0.38ppm。該負(fù)載增益誤差相當(dāng)于0.02Ω的輸出阻抗。很難知道0.02Ω來自何方——它可能是負(fù)載電流調(diào)制 Vp或Vm,并通過LTC6240內(nèi)的共模抑制或增益限制過程起作用,或者它可能只是導(dǎo)線和電路板電阻。無論如何,為使增益保持精確,我們可以將LTC6240的反饋遠(yuǎn)程連接到最終負(fù)載,形成一個開爾文連接。圖7顯示了小信號脈沖響應(yīng)。
圖7. 小信號脈沖響應(yīng)
對綠色通道中的振鈴我要表示道歉,這是高壓放大器的輸出。它不是自行振鈴的,原因只是我使用的示波器探針和板對板接地很一般。黃色通道是緩沖器輸出,它是由Cin + Rin主導(dǎo)的簡單指數(shù)圖像。
圖8顯示了大信號脈沖響應(yīng),輸入壓擺率為±32 V/μs——很好很平滑的響應(yīng)。
圖8. 對中等輸入壓擺率(±32 V/μs)的大信號響應(yīng)
圖9顯示了緩沖器對過載壓擺率的響應(yīng)。在100 kHz時80 V p-p輸要求峰值壓擺率為±25 V/μs,這在所示的±32 V/μs能力范圍內(nèi)。
圖9. 對過載輸入壓擺率(±130 V/μs)的大信號響應(yīng)
請注意,輸入濾波器將過載壓擺率限制為緩沖器可以處理的量。紋波是自舉電路無法跟隨輸出壓擺的偽像,這導(dǎo)致壓擺期間輸入裕量反復(fù)過載。減小Cin會迫使輸入壓擺率變得更大,自舉電路將無法跟隨,導(dǎo)致波紋更難看。
總結(jié)
本文展示了一種讓低壓運(yùn)算放大器緩沖器有效自舉成高壓緩沖器的方法。我們采用了一款具有出色輸入特性的運(yùn)算放大器,并進(jìn)一步提高其性能,使其電壓范圍、增益精度、壓擺率和失真性能均優(yōu)于原來的運(yùn)算放大器。