你的位置:首頁(yè) > 電路保護(hù) > 正文

從材料等9大方面全新認(rèn)識(shí)圖像傳感器

發(fā)布時(shí)間:2019-02-19 責(zé)任編輯:wenwei

【導(dǎo)讀】典型圖像傳感器的核心是CCD單元(charge-coupled device,電荷耦合器件)或標(biāo)準(zhǔn)CMOS單元(complementary meta-oxide semiconductor,互補(bǔ)金屬氧化物半導(dǎo)體)。CCD和CMOS傳感器具有類似的特性,它們被廣泛應(yīng)用于商業(yè)攝像機(jī)上。

不過,現(xiàn)代多數(shù)傳感器均使用CMOS單元,這主要是出于制造方面的考慮。傳感器和光學(xué)器件常常整合在一起用于制造晶片級(jí)攝像機(jī),這種攝像機(jī)被用在類似于生物學(xué)或顯微鏡學(xué)等領(lǐng)域,如圖1所示。
 
從材料等9大方面全新認(rèn)識(shí)圖像傳感器
圖1:整合了光學(xué)器件和顏色過濾器的圖像傳感器的常用排列
 
圖像傳感器是為滿足不同應(yīng)用的特殊目標(biāo)而設(shè)計(jì)的,它提供了不同級(jí)別的靈敏度和質(zhì)量。想要熟悉各種傳感器,可查閱其廠商信息。例如,為了在硅基模和動(dòng)態(tài)響應(yīng)(用于實(shí)現(xiàn)光強(qiáng)度和顏色檢測(cè))之間有一個(gè)最好的折中,對(duì)一個(gè)特定的半導(dǎo)體制造過程,需優(yōu)化每個(gè)光電二極管傳感器單位的大小和組成成分。
 
對(duì)計(jì)算機(jī)視覺而言,采樣理論的效果具有重要意義,如目標(biāo)場(chǎng)景的像素范圍就會(huì)用到Nyquist頻率。傳感器分辨率和光學(xué)器件能一起為每個(gè)像素提供足夠的分辨率,以便對(duì)感興趣特征進(jìn)行成像,因此有這樣的結(jié)論:興趣特征的采樣(或成像)頻率應(yīng)該是重要像素(對(duì)感興趣的特征而言)中最小像素大小的兩倍。當(dāng)然,對(duì)成像精度而言,兩倍的過采樣僅僅是一個(gè)最低目標(biāo),在實(shí)際應(yīng)用中,并不容易決定單像素寬度的特征。
 
對(duì)于給定的應(yīng)用,要取得最好的結(jié)果,需校準(zhǔn)攝像機(jī)系統(tǒng),以便在不同光照和距離條件下確定像素位深度(bit depth)的傳感器噪聲以及動(dòng)態(tài)范圍。為了能處理傳感器對(duì)任何顏色通道所產(chǎn)生的噪聲和非線性響應(yīng),并且檢測(cè)和校正像素壞點(diǎn)、處理幾何失真的建模,需發(fā)展合適的傳感器處理方法。如果使用測(cè)試模式來設(shè)計(jì)一個(gè)簡(jiǎn)單標(biāo)定方法,這種方法在灰度、顏色、特征像素大小等方面具有由細(xì)到粗的漸變,就會(huì)看到結(jié)果。
 
1、傳感器材料
 
硅制圖像傳感器應(yīng)用最廣,當(dāng)然也會(huì)使用其他材料,比如在工業(yè)和軍事應(yīng)用中會(huì)用鎵(Ga)來覆蓋比硅更長(zhǎng)的紅外波長(zhǎng)。不同的攝像機(jī),其圖像傳感器的分辨率會(huì)有所不同。從單像素光電晶體管攝像機(jī)(它通過一維直線掃描陣列用于工業(yè)應(yīng)用),到普通攝像機(jī)上的二維長(zhǎng)方形陣列(所有到球形整列的路徑均用于高分辨率成像),都有可能用到。(本章最后會(huì)介紹傳感器配置和攝像機(jī)配置)。
 
普通成像傳感器采用CCD、CMOS、BSI和Foveon方法進(jìn)行制造。硅制圖像傳感器具有一個(gè)非線性的光譜響應(yīng)曲線,這會(huì)很好地感知光譜的近紅外部分,但對(duì)藍(lán)色、紫色和近紫外部分就感知得不好(如圖2所示)。
 
從材料等9大方面全新認(rèn)識(shí)圖像傳感器
圖2:幾種硅光電二極管的典型光譜響應(yīng)??梢宰⒁獾剑怆姸O管在900納米附近的近紅外范圍內(nèi) 具有高的敏感度,而在橫跨400納米~700納米的可見光范圍內(nèi)具有非線性的敏感度。 由于標(biāo)準(zhǔn)的硅響應(yīng)的緣故,從攝像機(jī)中去掉IR濾波器會(huì)增加近紅外的靈敏度。(光譜數(shù)據(jù)圖像的使用已獲得OSI光電股份有限公司的許可)
 
注意,當(dāng)讀入原始數(shù)據(jù),并將該數(shù)據(jù)離散化成數(shù)字像素時(shí),會(huì)導(dǎo)致硅光譜響應(yīng)。傳感器制造商在這個(gè)區(qū)域做了設(shè)計(jì)補(bǔ)償,然而,當(dāng)根據(jù)應(yīng)用標(biāo)定攝像機(jī)系統(tǒng)并設(shè)計(jì)傳感器處理方法時(shí),應(yīng)該考慮傳感器的顏色響應(yīng)。
 
2、傳感器光電二極管元件
 
圖像傳感器的關(guān)鍵在于光電二極管的大小或元件的大小。使用小光電二極管的傳感器元件所捕獲的光子數(shù)量沒有使用大的光電二極管多。如果元件尺寸小于可捕獲的可見光波長(zhǎng)(如長(zhǎng)度為400納米的藍(lán)光),那么為了校正圖像顏色,在傳感器設(shè)計(jì)中必須克服其他問題。傳感器廠商花費(fèi)大量精力來設(shè)計(jì)優(yōu)化元件大小,以確保所有的顏色能同等成像(如圖3所示)。在極端的情況下,由于缺乏累積的光子和傳感器讀出噪聲,小的傳感器可能對(duì)噪聲更加敏感。如果二極發(fā)光管傳感器元件太大,那么硅材料的顆粒大小和費(fèi)用會(huì)增加,這沒有任何優(yōu)勢(shì)可言。一般商業(yè)傳感器設(shè)備具有的傳感器元件大小至少為1平方微米,每個(gè)生產(chǎn)廠商會(huì)不同,但為了滿足某些特殊的需求會(huì)有一些折中。
 
從材料等9大方面全新認(rèn)識(shí)圖像傳感器
圖3:基本顏色的波長(zhǎng)分配。注意,基本顏色區(qū)域相互重疊, 對(duì)所有的顏色而言,綠色是一個(gè)很好的單色替代品
 
3、傳感器配置:馬賽克、Faveon和BSI
 
圖4顯示了多光譜傳感器設(shè)計(jì)的不同片內(nèi)配置,包括馬賽克和堆疊方法。在馬賽克方法中,顏色過濾器被裝在每個(gè)元件的馬賽克模式上。Faveon傳感器堆疊方法依賴于顏色波長(zhǎng)深度滲透到半導(dǎo)體材料的物理成分,其中每種顏色對(duì)硅材料進(jìn)行不同程度的滲透,從而對(duì)各自的顏色進(jìn)行成像。整個(gè)元件大小可適用于所有顏色,所以不需要為每種顏色分別配置元件。
 
從材料等9大方面全新認(rèn)識(shí)圖像傳感器
圖4:(左圖)堆疊RGB元件的Foveon方法:在每個(gè)元件位置都有RGB顏色, 并在不同的深度吸收不同的波長(zhǎng);(右圖)標(biāo)準(zhǔn)的馬賽克元件:在每個(gè)光電二極管上面放置一個(gè)RGB濾波器,每個(gè)濾波器只允許特定的波長(zhǎng)穿過每個(gè)光電二極管
 
反向照明(back-side illuminated,BSI)傳感器結(jié)構(gòu)具有更大的元件區(qū)域,并且每個(gè)元件要聚集更多的光子,因而在晶粒上重新布置了傳感器接線。
 
傳感器元件的布置也影響到顏色響應(yīng)。例如,圖5顯示了基本顏色(R、G、B)傳感器以及白色傳感器的不同排列,其中白色傳感器(W)有一個(gè)非常清晰或非彩色的顏色濾波器。傳感器的排列考慮到了一定范圍的像素處理,如在傳感器對(duì)一個(gè)像素信息的處理過程中,會(huì)組合在鄰近元件的不同配置中所選取的像素,這些像素信息會(huì)優(yōu)化顏色響應(yīng)或空間顏色分辨率。實(shí)際上,某些應(yīng)用僅僅使用原始的傳感器數(shù)據(jù)并執(zhí)行普通的處理過程來增強(qiáng)分辨率或者構(gòu)造其他顏色混合物。
 
 
從材料等9大方面全新認(rèn)識(shí)圖像傳感器
圖5:元件顏色的幾個(gè)不同馬賽克配置,包括白色、基本RGB顏色和次要CYM元件。 每種配置為傳感器處理過程優(yōu)化顏色或空間分辨率提供了不同的方法(圖像來自于《Building Intelligent Systems》一書,并得到Intel出版社的使用許可)。
 
整個(gè)傳感器的大小也決定了鏡頭的大小。一般來說,鏡頭越大通過的光越多,因此,對(duì)攝影應(yīng)用而言,較大的傳感器能更好地適用于數(shù)字?jǐn)z像機(jī)。另外,元件在顆粒上排列的縱橫比(aspect ratio)決定了像素的幾何形狀,如,4:3和3:2的縱橫比分別用于數(shù)字?jǐn)z像機(jī)和35毫米的膠片。傳感器配置的細(xì)節(jié)值得讀者去理解,這樣才能夠設(shè)計(jì)出最好的傳感器處理過程和圖像預(yù)處理程序。
 
4、動(dòng)態(tài)范圍和噪聲
 
當(dāng)前,最先進(jìn)的傳感器每個(gè)顏色單元能提供至少8個(gè)比特位,通常是12~14個(gè)比特位。傳感器元件需要花費(fèi)空間和時(shí)間來聚集光子,所以較小的元件必須經(jīng)過精心設(shè)計(jì),以避免產(chǎn)生一些問題。噪聲可能來自于所用的光學(xué)元件、顏色濾波器、傳感器元件、增益和A/D轉(zhuǎn)換器、后期處理過程或者壓縮方法等。傳感器的讀出噪聲也會(huì)影響到實(shí)際的分辨率,因?yàn)槊總€(gè)像素單元從傳感器中讀出再傳到A/D轉(zhuǎn)換器中,從而組成數(shù)字形式的行和列,以便用于像素轉(zhuǎn)換。越好的傳感器會(huì)產(chǎn)生越少的噪聲,同時(shí)會(huì)得到更高效的比特分辨率。Ibenthal 的工作是降噪方面的好文獻(xiàn)。
 
另外,傳感器光子吸收對(duì)每種顏色會(huì)有所不同,對(duì)藍(lán)色有可能有些問題,即對(duì)于較小的傳感器成像而言這是最難的一種顏色。在某些情況下,生產(chǎn)商會(huì)試圖在傳感器中為每種顏色內(nèi)建一個(gè)簡(jiǎn)單的伽馬曲線修正方法,但這種方法并不值得提倡。在對(duì)彩色有需求的應(yīng)用中,可以考慮色度設(shè)備模型和顏色管理,甚至讓傳感器的每種顏色通道具有非線性特征并建立一系列簡(jiǎn)單的校正查找表(Lookup Table, LUT)轉(zhuǎn)換。
 
5、傳感器處理
 
傳感器處理用于從傳感器陣列中去馬賽克并聚集像素,也用于校正感知瑕疵。在這一節(jié)我們會(huì)討論傳感器處理基礎(chǔ)。
 
通常在每個(gè)成像系統(tǒng)中都有一個(gè)專有的傳感器處理器,包括一個(gè)快速HW傳感器接口、優(yōu)化的超長(zhǎng)指令集(very long instruction word,VLIW)、單指令多數(shù)據(jù)流(single instruction multiple data, SIMD)指令以及具有固定功能的硬件模塊,這些功能是為了解決大規(guī)模并行像素處理所造成的工作負(fù)載。通常,傳感器處理過程透明且自動(dòng)化,并由成像系統(tǒng)的生產(chǎn)廠商設(shè)置,來自傳感器的所有圖像均以同樣的方式處理。也存在用于提供原始數(shù)據(jù)的其他方式,這些數(shù)據(jù)允許針對(duì)應(yīng)用來定制傳感器處理過程,就像數(shù)字?jǐn)z影那樣。
 
6、去馬賽克
 
根據(jù)不同的傳感器元件配置(如圖5所示),可利用各種去馬賽克算法將原始傳感器數(shù)據(jù)生成最終的RGB像素。Losson &Yang還有Li等人分別給出了兩篇非常好的綜述文獻(xiàn),這些文獻(xiàn)介紹了各種方法以及所面臨的挑戰(zhàn)等。
 
去馬賽克的一個(gè)主要挑戰(zhàn)之一是像素插值,其作用是將鄰近單元的顏色通道組合成單個(gè)像素。在給定傳感器元件排列的幾何形狀以及單元排列的縱橫比的條件下,這是一個(gè)重要的問題。一個(gè)與之相關(guān)的問題是顏色單元的加權(quán)問題,如在每個(gè)RGB像素中每種顏色應(yīng)該占多少比例。因?yàn)樵隈R賽克傳感器中,空間元件分辨率大于最終組合的RGB像素分辨率,某些應(yīng)用需要原始傳感器數(shù)據(jù),以便盡可能利用所有的精度和分辨率,或者有些處理要么需要增強(qiáng)有效的像素分辨率,要么需要更好地實(shí)現(xiàn)空間精確的顏色處理和去馬賽克處理。
 
7、壞像素的校正
 
像LCD顯示器一樣,傳感器也可能會(huì)有壞像素。通過在攝像機(jī)模塊或驅(qū)動(dòng)程序中提供需要校正的壞像素坐標(biāo),供應(yīng)商可以在工廠校正傳感器,并為已知的缺陷提供一個(gè)傳感器缺陷圖。在某些情況下,自適應(yīng)的缺陷校正方法會(huì)用在傳感器上,以便監(jiān)控鄰近像素點(diǎn)來發(fā)現(xiàn)缺陷,然后校正一定范圍內(nèi)的缺陷類型,比如單像素缺陷、列或行缺陷以及類似2×2或3×3的塊狀缺陷。為了實(shí)時(shí)尋找瑕疵,攝像機(jī)驅(qū)動(dòng)也可提供自適應(yīng)的缺陷分析,在攝像機(jī)的啟動(dòng)菜單中可能會(huì)提供一個(gè)特殊的補(bǔ)償控制。
 
8、顏色和照明校正
 
有必要進(jìn)行顏色校正以便平衡總的顏色精確度和白平衡。如圖1-2所示,硅傳感器上對(duì)紅色和綠色這兩種顏色通常很敏感,但是對(duì)藍(lán)色卻不敏感,因此,理解和標(biāo)定傳感器是得到最精確顏色的基本工作。
 
大多數(shù)圖像傳感器的處理器包含了用于光暈校正的幾何處理器,這在圖像的邊緣表現(xiàn)為光照更暗。校正基于幾何扭曲函數(shù),可考慮可編程的光照功能來增加朝向邊緣的光照,這需要在出廠前進(jìn)行標(biāo)定,以便與光學(xué)的光暈?zāi)J较嗥ヅ洹?/div>
 
9、幾何校正
 
鏡頭可能會(huì)有幾何相差或朝邊緣發(fā)生扭曲,產(chǎn)生徑向失真的圖像。為了解決鏡頭畸變,大多數(shù)成像系統(tǒng)具有專用的傳感器處理器,它有一個(gè)硬件加速的數(shù)字扭曲元件,類似于GPU上的紋理采樣器。在工廠就會(huì)針對(duì)光學(xué)器件的幾何校正進(jìn)行校準(zhǔn)并編程。
 
 
推薦閱讀:
 
汽車用方向盤轉(zhuǎn)角傳感器系統(tǒng)技術(shù)方案
電子傳感器是什么?電子傳感器有幾根線?怎么接線?
振動(dòng)傳感器的機(jī)電變換原理?主要的分類有哪些?
負(fù)壓傳感器工作原理、作用、使用方法與爆破壓力值
MEMS傳感器推動(dòng)汽車主動(dòng)安全系統(tǒng)應(yīng)用
要采購(gòu)傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉