【導(dǎo)讀】鑒于全球能源危機(jī),當(dāng)前電子設(shè)備的重點(diǎn)是實(shí)現(xiàn)高功率與低能耗的結(jié)合。因此,許多電子公司都在提高其眾多產(chǎn)品規(guī)格中的效率標(biāo)準(zhǔn)。然而,常規(guī)的硬開關(guān)轉(zhuǎn)換器幾乎無法滿足這些要求。
鑒于全球能源危機(jī),當(dāng)前電子設(shè)備的重點(diǎn)是實(shí)現(xiàn)高功率與低能耗的結(jié)合。因此,許多電子公司都在提高其眾多產(chǎn)品規(guī)格中的效率標(biāo)準(zhǔn)。然而,常規(guī)的硬開關(guān)轉(zhuǎn)換器幾乎無法滿足這些要求。所以,電源單元的開發(fā)人員已經(jīng)轉(zhuǎn)向諸如LLC諧振轉(zhuǎn)換器之類的軟開關(guān)拓?fù)洌蕴岣咝什?shí)現(xiàn)更高的工作頻率。但是,他們必須考慮以下幾個(gè)方面的問題。
諧振LLC半橋可確保整個(gè)開關(guān)設(shè)備在導(dǎo)通之前進(jìn)行零電壓開關(guān)(ZVS)(或在關(guān)斷時(shí)為零電流)。因此,可以通過在每次轉(zhuǎn)換期間疊加開關(guān)電流和電壓來避免能量損失。利用這種電路,開關(guān)損耗可以在高頻下也保持較低水平,從而減小電抗組件的尺寸。當(dāng)然,較低的損耗也允許使用較小的散熱器。零電壓條件源于MOSFET體二極管的固有導(dǎo)通。在極快的負(fù)載變化期間,MOSFET可以從零電壓轉(zhuǎn)換為零電流開關(guān)條件。在這種情況下,高dv/dt值可能會(huì)將固有雙極型晶體管切換到導(dǎo)通狀態(tài),這通常會(huì)導(dǎo)致MOSFET損壞。
LLC拓?fù)?/p>
LLC拓?fù)渲邪霕虻幕倦娐钒▋蓚€(gè)機(jī)械開關(guān):高邊機(jī)械開關(guān)(Q1)和低邊機(jī)械開關(guān)(Q2)。它們由電感器Lr和電容器Cr連接到變壓器(參見圖1)。機(jī)械開關(guān)由它們的固有二極管(D1和D2)和固有電容輸出電阻(C1和C2)橋接。為了闡明它們?cè)谝话愎ぷ髟碇械淖饔茫鼈冊(cè)趫D1中分別被標(biāo)示。此外,還可以看到另一個(gè)電感Lm。這是變壓器的漏感,它在LLC拓?fù)渲衅鹬匾淖饔谩?/p>
圖1:電感器Lr和電容器Cr連接到變壓器
假設(shè)變壓器的初級(jí)電感值Lm太高以至于對(duì)諧振網(wǎng)絡(luò)沒有影響,則上圖所示的轉(zhuǎn)換器充當(dāng)串聯(lián)諧振轉(zhuǎn)換器。
在諧振單元中,如果輸入信號(hào)的頻率(fi)等于諧振頻率(fr),即LC阻抗等于零,則可實(shí)現(xiàn)最大放大率。轉(zhuǎn)換器的工作頻率范圍受兩個(gè)特定諧振頻率值所限制。這些數(shù)值取決于電路。LLC控制器將MOSFET的開關(guān)頻率(fs)設(shè)置為等于開關(guān)的諧振頻率,以確保諧振的寶貴優(yōu)勢(shì)。
圖2:寄生電氣等效電路
在負(fù)載變化期間,諧振頻率從最小值(fr2)變?yōu)樽畲笾?fr1):
當(dāng)fs≥fr1時(shí),LLC用作RC串聯(lián)諧振電路。該工作原理適用于高負(fù)載,即Lm面對(duì)低阻抗的情況。相反地,對(duì)于fs≤fr2,LLC則充當(dāng)RC并聯(lián)諧振電路,這是低負(fù)載的情況。不過這種情況通常不會(huì)發(fā)生,因?yàn)橄到y(tǒng)隨后將在ZCS(零電流開關(guān))模式下運(yùn)行。如果頻率fi處于fr2 <fi <fr1的范圍內(nèi),那么這兩種工作原理將結(jié)合起來。
圖3
如果以圖形形式顯示諧振單元的放大率,則會(huì)得到如圖3所示的曲線,這表明了曲線形狀如何根據(jù)Q值而改變。
曲線
LLC諧振轉(zhuǎn)換器的工作范圍受到最大放大率的限制。特別要注意的是,在fr1或fr2處無法達(dá)到最大電壓放大率。實(shí)際上,實(shí)現(xiàn)最大放大率的頻率在fr2和fr1之間。隨著Q值的降低(即隨著負(fù)載的降低),最大放大頻率移向fr2,并且獲得了更高的最大放大率。隨著Q值的提高(即負(fù)載的增加),最大放大率的頻率移向fr1,而最大放大率減小了。因此,對(duì)于諧振網(wǎng)絡(luò),滿載是最不利的情況。
關(guān)于MOSFET,如上所述,帶有LLC的諧振轉(zhuǎn)換器在軟開關(guān)MOSFET方面具有關(guān)鍵優(yōu)勢(shì),而正弦輸出電流可降低整個(gè)系統(tǒng)的發(fā)射干擾(EMC)。
圖4說明了LLC轉(zhuǎn)換器的典型波形,它還清楚地表明,漏極電流Ids1在變?yōu)檎抵跋日袷帪樨?fù)值。負(fù)電流值表示體二極管正在導(dǎo)電。在此階段,MOSFET的漏極-源極電壓非常低,因?yàn)樗Q于二極管上的壓降電壓。如果在體二極管的電導(dǎo)率實(shí)際上為零的同時(shí)進(jìn)行MOSFET開關(guān),則會(huì)發(fā)生向ZVS的過渡,從而降低了開關(guān)損耗。結(jié)果可以減小散熱器的尺寸,從而提高系統(tǒng)的效率。
圖4:LLC轉(zhuǎn)換器的典型波形
如果MOSFET的開關(guān)頻率fs小于fr1,則轉(zhuǎn)換器上的電流呈現(xiàn)不同的形狀。 如果這情況持續(xù)足夠長(zhǎng)的時(shí)間,以至在輸出二極管上產(chǎn)生間歇性電流,則初級(jí)側(cè)的電流會(huì)偏離正弦波形。
此外,如果MOSFET的固有輸出電容C1和C2具有可與Cr相比的數(shù)值,則諧振頻率fr也取決于組件。為避免這種情況并使fr值與所使用的組件無關(guān),關(guān)鍵是在設(shè)計(jì)階段選擇大于C1和C2的Cr數(shù)值。
圖5:fs_xiaoyu_fr1情況下LLC轉(zhuǎn)換器的典型波形
續(xù)流和ZVS條件
針對(duì)與諧振頻率有關(guān)的方程式的分析表明,諧振網(wǎng)絡(luò)的輸入阻抗在最大放大率的頻率以上為電感性,而諧振網(wǎng)絡(luò)的輸入電流(Ip)則保持低于施加到諧振網(wǎng)絡(luò)的電壓(Vd)。在低于最大放大率頻率時(shí),諧振網(wǎng)絡(luò)的輸入阻抗相比之下是電容性的,并且Ip大于Vd。
在電容性范圍內(nèi)工作期間,在開關(guān)操作過程中,體二極管在電壓方面會(huì)發(fā)生極性反轉(zhuǎn),但體二極管在這個(gè)時(shí)候仍在承載電流,這會(huì)使MOSFET承受很高的故障風(fēng)險(xiǎn)。如綠色圓圈(圖6)中顯示的那樣,內(nèi)部二極管的反向恢復(fù)時(shí)間(trr)是非常重要的。
圖6:具有電容性或電感性輸入阻抗的電流的時(shí)間響應(yīng)
圖7:從低負(fù)載到高負(fù)載的過渡
根據(jù)這一點(diǎn),在從低負(fù)載過渡到高負(fù)載的期間(見圖8),控制電路(LLC控制器)應(yīng)能夠使MOSFET切換至ZVS模式并達(dá)到正的關(guān)斷電流范圍。如果這不能保證,那么MOSFET可能會(huì)在危險(xiǎn)范圍內(nèi)工作。
圖8:零電壓_ZV_和零電流_ZC_開關(guān)區(qū)域的增益
在恒定的低負(fù)載下,系統(tǒng)在較低的諧振頻率fr2附近運(yùn)行。在這種情況下,可以保證ZVS模式和正的關(guān)斷漏極電流。在負(fù)載變化后(從低到高),開關(guān)頻率應(yīng)遵循新的諧振頻率。如果不是這種情況(如圖8中的綠線所示),則系統(tǒng)狀態(tài)處于范圍3(ZCS范圍)。 這意味著ZVS模式和正的關(guān)斷漏極電流不可用。如果MOSFET關(guān)斷,電流也將流過其體二極管。如果在放大圖中分析從低負(fù)載到高負(fù)載的過渡,可以建立以下條件:
黑色虛線繪制了過渡過程中的理想路線,而綠線則對(duì)應(yīng)于實(shí)際路線??梢钥吹剑趶牡拓?fù)載到高負(fù)載的過渡期間,系統(tǒng)在ZCS范圍內(nèi)運(yùn)行。這樣,內(nèi)部二極管的性能就變得非常重要。因此,在體二極管中恢復(fù)時(shí)間非常短的斷路器,便成為了新型LLC概念的發(fā)展趨勢(shì)。
評(píng)測(cè)和參考電路板
為了開發(fā)開關(guān)電源,我們建議您使用評(píng)測(cè)板或參考板來收集經(jīng)驗(yàn)數(shù)值,它們還可用于測(cè)試帶有快速體二極管的MOSFET并評(píng)估其優(yōu)勢(shì)。這些經(jīng)驗(yàn)也可用于儒卓力的不同LLC拓?fù)湫涂睢?/p>
STEVAL-ISA132V1評(píng)測(cè)板可在限定的時(shí)間內(nèi)提供170 W的連續(xù)輸出(VIN = 190 V至264 V AC,VOUT = 24 V),峰值輸出超過300W。它的架構(gòu)基于不帶PFC的單級(jí)LLC諧振變換器和L6699諧振控制器。它具有一些創(chuàng)新功能,例如自調(diào)整、可調(diào)整的空載時(shí)間、對(duì)工作模式的抗電容保護(hù),以及可防止啟動(dòng)過程中發(fā)生硬開關(guān)的專有安全啟動(dòng)。
EVLSTNRG-170W評(píng)測(cè)板提供了通過使用PFC級(jí)以及基于STNRG388A數(shù)字控制器的LLC轉(zhuǎn)換器的數(shù)字控制獲得經(jīng)驗(yàn)的可能性。在這種情況下,上游PFC級(jí)將在“增強(qiáng)的恒定導(dǎo)通時(shí)間”模式(DCM-CCM邊界)下運(yùn)行,而LLC轉(zhuǎn)換器則在“時(shí)移控制 ”模式(TSC)下運(yùn)行。該評(píng)測(cè)板的設(shè)計(jì)可提供高達(dá)170 W的連續(xù)輸出,應(yīng)用支持多種輸出電壓:主要應(yīng)用為24 V(6 A),例如12 V (2 A)用于控制器,5 V (2 A)則用于待機(jī)操作(始終開啟)。
EVLCMB1-90WADP是另一個(gè)較小的輸出評(píng)測(cè)板,這是專門針對(duì)筆記本電腦AC/DC適配器的典型規(guī)格而設(shè)計(jì)的19 V/90 W轉(zhuǎn)換器。當(dāng)然,只要在目標(biāo)設(shè)計(jì)中對(duì)輸出電壓進(jìn)行相應(yīng)的調(diào)整,該評(píng)測(cè)板也可以用作進(jìn)一步應(yīng)用的基礎(chǔ)。它具有較寬的電源輸入范圍(頻率為45至65 Hz時(shí)為90 V至264 V AC),低負(fù)載時(shí)的功耗非常低。
同樣,其架構(gòu)基于兩階段方法:過渡模式PFC預(yù)調(diào)節(jié)器和下游LLC半橋諧振轉(zhuǎn)換器。 PFC級(jí)和LLC轉(zhuǎn)換器的兩個(gè)控制器都集成在STCMB1 Combo IC中。
(來源:儒卓力)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱editor@52solution.com聯(lián)系小編進(jìn)行侵刪。
推薦閱讀:
【2021年10月產(chǎn)業(yè)新訊】存儲(chǔ)行業(yè)市場(chǎng)動(dòng)向早知道
前端放大器中使用ESD二極管作為電壓鉗的設(shè)計(jì)
如何通過能量收集技術(shù)延長(zhǎng)無線傳感器節(jié)點(diǎn)的電池續(xù)航?
【技術(shù)大咖測(cè)試筆記系列】之八:低功率范圍內(nèi)的MOSFET表征
IOTE物聯(lián)網(wǎng)展參觀指南丨面對(duì)面對(duì)接最優(yōu)秀的企業(yè),聽最前沿的會(huì)議!