你的位置:首頁 > 互連技術(shù) > 正文

智能車單片機(jī)的分段PID控制

發(fā)布時間:2021-08-09 責(zé)任編輯:lina

【導(dǎo)讀】自動尋跡智能車涉及到當(dāng)前高技術(shù)領(lǐng)域內(nèi)的許多先進(jìn)技術(shù),其中 主要的是傳感技術(shù)、路徑規(guī)劃和運(yùn)動控制。本課題是以飛思卡爾智能車競賽為背景,以單片機(jī)作為 控制單元,以攝像頭作為路徑識別傳感器,以直流電機(jī)作為小車的驅(qū)動裝置,以舵機(jī)控制小車轉(zhuǎn)向。
 
自動尋跡智能車涉及到當(dāng)前高技術(shù)領(lǐng)域內(nèi)的許多先進(jìn)技術(shù),其中 主要的是傳感技術(shù)、路徑規(guī)劃和運(yùn)動控制。本課題是以飛思卡爾智能車競賽為背景,以單片機(jī)作為 控制單元,以攝像頭作為路徑識別傳感器,以直流電機(jī)作為小車的驅(qū)動裝置,以舵機(jī)控制小車轉(zhuǎn)向。車模競賽的賽道是一個具有特定幾何尺寸約束、摩擦系數(shù)及光學(xué)特性的KT板,其中心貼有對可見光及不可見光均有較強(qiáng)吸收特性的黑色條帶作為引導(dǎo)線,寬度為2.5 cm。在行駛過程中,系統(tǒng)通過攝像頭獲取前方賽道的圖像數(shù)據(jù),同時通過測速傳感器實時獲取智能車的速度,采用路徑搜索算法進(jìn)行尋線判斷和速度分析,然后作控制決策,控制轉(zhuǎn)向舵機(jī)和直流驅(qū)動電機(jī)工作。智能車通過實時對自身運(yùn)動速度及方向等進(jìn)行調(diào)整來“沿”賽道快速行駛。本文主要介紹攝像頭通過提取賽道黑線信息交予單片機(jī)處理,通過單片機(jī)輸出控制信號控制舵機(jī)轉(zhuǎn)向來控制車模的轉(zhuǎn)向,從而很好的自動循跡。
 
1 總體軟硬件結(jié)構(gòu)及思路
 
此智能車輛定位系統(tǒng)用攝像頭拍攝車輛前方的賽道,通過MC9S12XS128采樣視頻信號,獲得圖像數(shù)據(jù)。然后用合適的算法,如跟蹤邊緣檢測算法,分析圖像數(shù)據(jù),提取目標(biāo)指引線。然后,系統(tǒng)根據(jù)目標(biāo)指引線的位置信息,對舵機(jī)和電機(jī)施以合適的控制。本智能車運(yùn)動系統(tǒng)的結(jié)構(gòu)圖如圖1所示。
 
智能車單片機(jī)的分段PID控制
 
因為系統(tǒng)是一個有機(jī)的整體,所以需配合好系統(tǒng)的攝像頭、控制單片機(jī)、電機(jī)(包括直流伺服電動機(jī)、光電編碼器)、舵機(jī)和輔助電路(電源板、電機(jī)驅(qū)動板)等各個部分。舵機(jī)是實時控制車模的轉(zhuǎn)向,是比賽快速性和穩(wěn)定性的關(guān)鍵,舵機(jī)控制有很多的控制算法,如:PID經(jīng)典控制算法、模糊算法、算法等。
 
2 系統(tǒng)程序總體控制流程
 
系統(tǒng)的基本軟件流程是:首先,對各功能模塊和控制參數(shù)進(jìn)行初始化;然后,通過圖像采集模塊獲取前方賽道的圖像數(shù)據(jù),同時通過速度傳感器模塊獲取賽車的速度。采用PID對舵機(jī)進(jìn)行反饋控制。另外根據(jù)檢測到的速度,結(jié)合速度控制策略,對賽車速度不斷進(jìn)行適當(dāng)調(diào)整,使賽車在符合比賽規(guī)則的前提下,沿賽道快速行駛。系統(tǒng)的基本軟件結(jié)構(gòu)流程圖,如圖2所示。
 
智能車單片機(jī)的分段PID控制
 
系統(tǒng)的軟件要求控制的準(zhǔn)確性、穩(wěn)定性。采樣提取黑線是控制輸入量的基礎(chǔ),要求采樣的 穩(wěn)定。輸入量給舵機(jī)以后又要求舵機(jī)輸出的快速相應(yīng)性、穩(wěn)定性和準(zhǔn)確性。經(jīng)過多次實驗及近一個學(xué)期的調(diào)車經(jīng)驗,選用了并改進(jìn)了經(jīng)典的PID控制器對車模的舵機(jī)進(jìn)行控制調(diào)節(jié)。
 
3 圖像識別
 
用CCD攝像頭采集車模前方一定距離內(nèi)的黑線,從中提取相關(guān)量,用來控制舵機(jī)的轉(zhuǎn)向,實現(xiàn)智能車的自動循跡。由于單片機(jī)數(shù)據(jù)處理能力和速度有限,不能在短短的20 ms時間內(nèi)處理整場圖像。本系統(tǒng)設(shè)置攝像頭前瞻為1.2 m。在不影響道路檢測 需要的前提下,本系統(tǒng)采用隔行采集來壓縮圖像數(shù)據(jù),即相隔不同的有效行采集一行數(shù)據(jù)(近處相隔的少,遠(yuǎn)處相隔的多),一共可采集 44行數(shù)據(jù)。此外為了進(jìn)一步提高A/D轉(zhuǎn)換的速度,本系統(tǒng)還適當(dāng)?shù)貙S12的CPU超頻運(yùn)行并且設(shè)置A/D轉(zhuǎn)換器的 為8位,這樣每行能采樣到67個點,形成了一個面陣,而黑線在其中占據(jù)了某些點位。由于我們一行采集67個點,故中間值為33。圖像是智能車的底層,圖像的采集正確與否在以后的控制中尤為重要,故一定要確保采集回來的黑線的真實有效性,并且要增加濾波算法,比如在有效前瞻很小的時候,本來只要判斷出黑線的轉(zhuǎn)向即可,給舵機(jī)以極限轉(zhuǎn)角可以讓車急轉(zhuǎn)彎。但是有效行很少的時候,如果不用特殊的濾波方法,只要有一行的黑線提錯,就可能讓小車轉(zhuǎn)錯,至于轉(zhuǎn)出界。
 
4 分段PID控制
 
4.1 圖像信息提取量
 
從采集回來的圖像中提取控制量來控制舵機(jī)的轉(zhuǎn)向,實現(xiàn)智能車的自動循跡。本系統(tǒng)采用黑線偏移量even_diff和黑線某段斜率 D_diff-erent對舵機(jī)進(jìn)行控制,可稱為PD控制器。由于車模是個隨動系統(tǒng),在攝像頭1.2 m前瞻內(nèi)覆蓋的黑線不一定有設(shè)置的44行,特別是前方的彎特別急的時候,在攝像頭前瞻視角范圍內(nèi)覆蓋的黑線會特別少,比如13行或13行以下。根據(jù)這個特點,可設(shè)置一個有效前瞻量valid_line作為對前方的彎的平緩程度的反應(yīng)。
 
把每一行的黑線位置值與中間值作差,得到該行的偏移量,中間值33位賽道的中心位置點,偏移量表示在車模的視角下黑線處于賽道中的位置值。把每一行的偏移量相加之和除以攝像頭前瞻范圍內(nèi)的提取出的黑線行數(shù),得到黑線相對于車模中心的整體偏移量even_diff,用有效行內(nèi)的遠(yuǎn)處某些行與近處某些行(如前半場與后半場)偏移量之差得到有效行內(nèi)的黑線斜率D_differen。
 
這樣,從一場的黑線位置數(shù)據(jù)中,系統(tǒng)提取了有效行valid_line、even_diff、D_different 3個量來對舵機(jī)進(jìn)行控制。在實際情況中,D_different可以很靈活,因為前方黑線的斜率可以取不同段得到,可以根據(jù)實際要求得到不同段的斜率值,如速度快時可以適當(dāng)?shù)娜【嘬囕^遠(yuǎn)處的黑線斜率,以實現(xiàn)超前控制。
 
在智能車調(diào)試參數(shù)的時候,對這3個量的理解很是重要,具體來說,valid_line表征車模的有效前瞻,即看得有多遠(yuǎn),對于智能車在道路上行駛,看得遠(yuǎn)說明黑線都在前方,看不遠(yuǎn)說明智能車前方的黑線已經(jīng)偏左或者偏右,而這個量的大小正好可以表征彎的平緩與急切。另外,看得遠(yuǎn)則攝像頭采集的黑線多,系統(tǒng)信息量大,那么怎么處理這些大量的信息為我們所用就變得很關(guān)鍵,如看得1.2 m都能看見,說明小車必然在長直道上,不然也是小S彎,稍作處理就可以過濾掉小S彎了,讓小車像都是在直道上跑;看得很近說明彎已經(jīng)很急,這時候,只要能夠判斷出彎往那邊拐就可以給舵機(jī)一個極值急拐。even_diff表征在某一個特定視野下,小車與黑線偏離的程度,這個量可以讓智能車在某個特定視野下決定給舵機(jī)多大的轉(zhuǎn)角。D_different則在有效前瞻遠(yuǎn)的時候尤為關(guān)鍵,因為它可以預(yù)判前方的彎,從而超前的轉(zhuǎn)彎。
 
4.2 PD控制器形式
 
系統(tǒng)把這3個量處理成PD控制器的形式:
 
 智能車單片機(jī)的分段PID控制
 
其中a為根據(jù)賽道有效前瞻確定的不同有效行。Centre為舵機(jī)走直線的控制中間值。Steer為PD控制器給舵機(jī)的輸入量。由于車模舵機(jī)轉(zhuǎn)向控制是一個非線性系統(tǒng),而設(shè)置了入口條件“有效行判斷”,正好可以把這個非線性系統(tǒng)分割成不同段,在每一段可近似認(rèn)為轉(zhuǎn)向控制系統(tǒng)是線性的。即在某一小段范圍內(nèi),得到的黑線位置和對應(yīng)的舵機(jī)PID參照角度處理成 線性關(guān)系。 終實現(xiàn)簡單分段PID控制。
 
5 分段PID控制參數(shù)規(guī)律
 
在實際的調(diào)車過程中,我們總結(jié)發(fā)現(xiàn),PD控制器的參數(shù)Kp、Kd與有效前瞻valid_line、車模的速度相關(guān)。簡單點說,即小車速度越快,車模遇彎提前拐彎的應(yīng)越早??偨Y(jié)下來,有如下關(guān)系:  
 
其中A為Kp的基礎(chǔ)值,valid_line為車模運(yùn)行到某個狀態(tài)的有效前瞻(用提取的黑線數(shù)量來估定),speed為小車一場時間內(nèi)的脈沖值,表征車模時刻運(yùn)行的速度。低速時,可近似認(rèn)為speed/C為零,通過試驗法可以確定A值大小。在確定Kp基礎(chǔ)值之后,即可加速,在小車速度稍高的時候調(diào)試得出合適的B值、C值, 終使小車平穩(wěn)準(zhǔn)確的切線,循跡而行。此關(guān)系式可知,有效前瞻的變化是對Kp值影響 大也是 直接的一個量,我們平時調(diào)車經(jīng)驗而知,B參數(shù)應(yīng)比C敏感很多才行。有效行減少一行,對舵機(jī)轉(zhuǎn)向角的影響要遠(yuǎn)大于小車速度speed對Kp的對影響。而speed對舵機(jī)急轉(zhuǎn)快速性在車模高速的時候很是明顯。
 
為增加系統(tǒng)的魯棒性,并且更好的解決系統(tǒng)的非線性問題,我們將小車的前瞻分段,我們1.2 m的前瞻里面,總共有44行黑線,直道上全部提取回來,可以分為有效行37行一下、有效行30行以上、有效行24行以上、有效行18行以上、有效行13行以上與有效行13行以下7段。
 
雖然分為7段,各段單獨(dú)控制,參數(shù)單獨(dú)調(diào)節(jié),但是,Kp值與有效行(有效前瞻)成負(fù)相關(guān)的關(guān)系仍然成立,故Kp、Kp1、Kp2、Kp3、Kp4、Kp5依然大體上遵循與有效行負(fù)相關(guān)的關(guān)系,即Kp隨有效行的減小線性增加。
 
在每一段里面調(diào)節(jié)PD控制器的參數(shù),使小車能夠行使不同類別不同半徑的彎道。這樣就形成分段PD控制,小車的非線性問題可以很好的解決,系統(tǒng)的魯棒性也能夠增強(qiáng)。同時,為保護(hù)舵機(jī)不至于向左向右打得太狠,可以限定舵機(jī)的左右極限值: 
 
通過調(diào)試參數(shù)A、B、C,調(diào)節(jié)不同的Kp值,實踐證明,小車能夠平穩(wěn)、快速的自動巡線前行。
 
6 結(jié)束語
 
該算法把舵機(jī)的轉(zhuǎn)向的Kp系數(shù)與車速相關(guān)起來,能夠很好地配合車速與舵機(jī)轉(zhuǎn)向,提出以具體的智能車參數(shù)分段PD參數(shù)的規(guī)律,對智能車實際制作很有幫助,在智能車比賽中具有很廣的推廣價值。
 
實踐證明,參數(shù)調(diào)節(jié)合適的時候智能車能夠很好的適應(yīng)賽道,跑出希望的 佳路徑。為了參加第五屆“飛思卡爾”杯全國大學(xué)生智能汽車競賽,此控制算法在校級代表隊資格選拔賽中表現(xiàn)完美, 終跑出2.5 m/s的好成績,成功入選華北賽區(qū)參加比賽。實踐證明了智能車舵機(jī)分段PID控制轉(zhuǎn)向具有可行性和實用性。
 
 
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
 
 
推薦閱讀:
廣州國際電線電纜及附件展覽會公布新展期,將于2021年9月23至25日舉辦
TI 汽車網(wǎng)關(guān)處理器DRA821助力實現(xiàn)軟件定義汽車
貫徹安全與數(shù)據(jù)的完整性,值得信賴的數(shù)字隔離技術(shù)~
如何在降低噪聲性能的情況下設(shè)計良好的PCB布局
LLC 諧振半橋電源轉(zhuǎn)換器之工作原理
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉