建立FETching分立式放大器的一些提示
發(fā)布時間:2020-04-21 來源:George Alexandrov 和 Nathan Carter 責(zé)任編輯:wenwei
【導(dǎo)讀】用于光電二極管、壓電以及其他儀器儀表應(yīng)用的低噪聲放大器所要求的電路參數(shù)一般是:極高的輸入阻抗、低1/f噪聲或亞皮安偏置電流等,而提供的集成產(chǎn)品無法滿足這些要求。本文討論使用分立元器件設(shè)計低噪聲放大器的要求與挑戰(zhàn),并重點探討了折合到輸入的噪聲以及失調(diào)電壓調(diào)節(jié)。
高輸入增益拓撲的限制
典型分立式放大器如圖1所示,在高速運算放大器前使用匹配JFET器件實現(xiàn)的差分放大器,提供高輸入阻抗和一定的初始增益。系統(tǒng)噪聲主要由輸入級產(chǎn)生,因此無需使用低噪聲運算放大器。
圖1. 高速、低噪聲儀表放大器
不過,將輸出穩(wěn)定在低增益和高頻率有一定難度。添加RC補償網(wǎng)絡(luò)、CC和RC后,即可實現(xiàn)穩(wěn)定性,但這些元器件的最優(yōu)值隨增益而改變,增加了整體設(shè)計的復(fù)雜性。另外,大信號響應(yīng)對于某些應(yīng)用而言也過于緩慢。
圖2所示電路在單位增益處可獲得相應(yīng)的噪聲性能,無需進行補償。速度主要由運算放大器確定。該電路由三個主要部分組成:輸出運算放大器、FET輸入緩沖器以及對FET進行偏置的電流源。
圖2. 單位增益穩(wěn)定版本的放大器
輸入級的單位增益配置對運算放大器的噪聲性能有嚴格要求。在圖1所示電路中,輸入FET增益有限,從而減少了跟隨級的噪聲影響。在單位增益配置中,輸入緩沖器和運算放大器的總噪聲分離,因此需要使用低噪聲運算放大器。
輸入級電流源
如果部署不當,則用于偏置FET輸入緩沖器的電流源會對總系統(tǒng)噪聲產(chǎn)生極大的影響。最大程度降低偏置噪聲影響的一種方法,是在簡單電流鏡中添加衰減電阻,如圖3所示。
圖3. 帶衰減的電流鏡
流過晶體管 Q0 的電流鏡像至晶體管 Q1 和 Q2。噪聲源包括1/f以及晶體管的散粒噪聲。增加衰減電阻可降低散粒噪聲(系數(shù)為1 + gmRDEGENgmRDEGEN),但對1/f噪聲不起作用。該噪聲源以基極和發(fā)射極之間的電流建模,無法通過增加RDEGEN而得到改善。若要同時減少兩種噪聲源,就需要使用不同的電流源架構(gòu)。
圖4. 采用分流電阻的電流鏡
修改后的電流鏡如圖4所示。該電流源所需的晶體管數(shù)目較少,允許使用雙通道晶體管對代替四通道封裝,同時降低尺寸和成本。噪聲性能的提升極為明顯,因為同時消除了散粒噪聲和1/f噪聲。晶體管Q0 電流鏡像至晶體管 Q1。該電流通過一對電阻在集電極處分割,因此1/f和散粒噪聲將會均分。由于噪聲源來自同一個晶體管,因此它們是相干的。輸出差分信號,因此噪聲被消除,如圖5所示。
圖5. 顯示噪聲消除的電流源理想示意圖
依然可以衰減電流鏡晶體管,以便改善電流匹配和輸出阻抗。電流由RDEGEN上的壓降確定,因此晶體管匹配不如未衰減時來得重要。它允許使用幾乎所有的匹配對,但集電極電容必須較低,以保持穩(wěn)定性。兩種方案的差分輸入電容保持不變,因為兩個輸入器件的源間耦合主要由放大器的低差分輸入阻抗決定。
出于測試目的,確定偏置電流的基準電壓由連接 VCC的電阻設(shè)置。因此,如果VCC 發(fā)生改變,電路將比較容易產(chǎn)生性能問題。在實際方案中,應(yīng)使用齊納、帶隙或IC基準電壓源 代替電阻。
運算放大器
運算放大器確定整個放大器的速度、噪聲、輸出性能和失真,因此必須根據(jù)應(yīng)用而選擇。表1顯示合適運算放大器的典型值。
表1. 相關(guān)運算放大器特性
ADA4897是大部分高速檢測應(yīng)用的優(yōu)秀備選器件,這類應(yīng)用要求具備低噪聲性能。對于高電壓應(yīng)用,ADA4898也能勝任。該器件可采用±18 V電源供電,保持低噪聲的同時僅消耗8 mA電源電流。兩個放大器都采用復(fù)合設(shè)計,壓擺率超過50 V/μs。
輸入FET
輸入FET確定放大器的輸入特性。若要達到最佳性能,則要求FET具有良好的匹配、低噪聲以及低輸入偏置電流等特性。更重要的是,這些JFET可確定輸入失調(diào)電壓,因此它們必須良好匹配。對于LSK389而言,最大 ΔVGS為20 mV,這與 VOS為 20 mV相當。后文將討論降低這一相對較高失調(diào)電壓的技巧。
表2. 相關(guān)JFET特性
放大器性能
下文示例中的放大器采用nJFETLSK389A、晶體管PMP4201以及運算放大器ADA4897實現(xiàn)。評估板如圖6所示。
圖6. 放大器評估板,包含數(shù)字電位計連接
該放大器方案最明顯的誤差源是高輸入失調(diào)電壓。此失調(diào)電壓大部分由輸入FET的失配所造成,可高達10 mV。(LSK389數(shù)據(jù)手冊聲稱失配可高達20 mV,但測試中從未看到如此高的數(shù)字)。增益為100時,輸出失調(diào)為1 V,此時放大器基本無用。在該放大器可用作前置放大器之前,需調(diào)節(jié)高輸入失調(diào)電壓。采用數(shù)字電位計AD5292可完成這一調(diào)節(jié)。本文介紹基于電位計位置進行失調(diào)調(diào)節(jié)的兩種方法。
輸入失調(diào)電壓
放大器測試版本的輸入失調(diào)電壓在1 mV至10 mV范圍內(nèi)變動。輸入JFET的失配是造成這一失調(diào)的主要原因。LSK389數(shù)據(jù)手冊顯示IDSS 的變化量可達10%之多,從而影響到器件的VGS,并引入失調(diào)電壓。幸運的是,失調(diào)源于流過JFET的偏置電流不相等,因此提供這些電流的電流源可加以調(diào)節(jié),補償該誤差。獲得零失調(diào)電壓的一種方法如圖7所示。
圖7. 使用電位計消除輸入失調(diào)電壓
數(shù)字電位計(如AD5141或AD5292)可用于調(diào)節(jié)流過輸入器件的電流。表3顯示這些器件的關(guān)鍵參數(shù),這些器件包括通過SPI接口進行控制的三端電位計,可準確地放置游標,用于精確控制電阻。
表3. 數(shù)字電位計規(guī)格
不幸的是,這些數(shù)字電位計的端點處具有高寄生電容(最高達85 pF),高頻時會造成穩(wěn)定性和振鈴問題。圖8顯示帶與不帶該電位計的放大器步進響應(yīng)。
圖8. 放大器步進響應(yīng) a) 帶電位計 b) 不帶電位計 (用于提供失調(diào)調(diào)節(jié))
85 pF寄生電容連接輸入FET的源端與地,高頻時產(chǎn)生極大的振鈴與不穩(wěn)定。一種替代的偏置設(shè)置如圖9所示。該設(shè)置可降低輸入失調(diào)電壓,同時保持高頻下的低噪聲和穩(wěn)定性。
圖9. 使用電位計消除輸入失調(diào)電壓的替代方法
在上述兩種偏置方法中,數(shù)字電位計用于調(diào)節(jié)流過每個FET的電流,直到它們的柵極至源極電壓匹配,且輸入失調(diào)電壓達到最小值。然而,圖9所示的偏置方案可確保電位計的高寄生電容不會產(chǎn)生高頻不穩(wěn)定性和振鈴。它將圖3和圖4中兩個不同的電流鏡配置相結(jié)合來實現(xiàn)。 Q0/Q1 電流鏡將其集電極電流分離,作為流入FET的主要電流,從而使偏置晶體管幾乎不產(chǎn)生噪聲。Q0/Q2/Q3 形成更為傳統(tǒng),但噪聲更大的電流鏡。這些信號經(jīng)衰減后僅消耗總FET偏置電流的1%到2%(約30 μA)。它不足以引入大量噪聲,但可提供足夠的調(diào)節(jié)信號,輕松調(diào)節(jié)10 mV失調(diào)電壓。更重要的是,它可確保電位計的寄生電容不影響輸出。由于存在RS 分路器,使噪聲保持在較低水平,因此可根據(jù) Q2/Q3的衰減情況可靠調(diào)節(jié)失調(diào),并且任何電位計寄生效應(yīng)均不影響輸出。圖10顯示電流鏡調(diào)節(jié)后的步進響應(yīng)。
圖10. 放大器在電流鏡處調(diào)節(jié)后的步進響應(yīng)
數(shù)字電位計提供調(diào)節(jié)失調(diào)電壓的簡便方法,允許在寬工作溫度和電壓范圍內(nèi)最大程度降低失調(diào)電壓。AD5292集成20次可編程存儲器,允許調(diào)節(jié)失調(diào)電壓后永久儲存游標位置。本電路使用AD5292評估板連接板外失調(diào)調(diào)節(jié)電位計。對于更為緊湊的設(shè)計,可在板上集成數(shù)字電位計,并通過其片內(nèi)串行接口引腳進行編程。
使用這種方法,通過AD5292 20 kΩ電位計可成功將LSK389/ ADA4897放大器的輸入失調(diào)電壓降低至數(shù)微伏。
失調(diào)漂移
放大器未經(jīng)過調(diào)節(jié)時,失調(diào)電壓溫度系數(shù)(或輸入失調(diào)電壓隨溫度上升而增加的比例)約為4 μV/°C。加入AD5292可將該數(shù)值提升至大約25 μV/°C。該結(jié)果如圖11所示。
圖11. 輸入失調(diào)電壓與溫 度的函數(shù)關(guān)系
雖然漂移的變化幅度巨大,但放大器的動態(tài)范圍依然有明顯的改進。考慮增益為100且溫度為85°C時,未經(jīng)調(diào)節(jié)放大器的5 mV失調(diào)情況;此時,輸出失調(diào)為:
若相同工作條件下的失調(diào)調(diào)節(jié)為5 μV,則輸出失調(diào)為:
因此,動態(tài)范圍改善300 mV以上。它同樣可提供現(xiàn)場校準和系統(tǒng)級漂移校準,并且該調(diào)節(jié)技術(shù)可進一步改善精度性能。
噪聲
圖12. 經(jīng)不同方式調(diào)節(jié)后,折合到輸入的噪聲電壓
圖12顯示不同放大器配置下的噪聲密度。該放大器具有2 nV/√Hz的寬帶噪聲密度,電源電流為8 mA,性能相比現(xiàn)有集成式產(chǎn)品有所改善。10 Hz時,未經(jīng)調(diào)節(jié)的1/f噪聲為4 nV/√Hz;而1 Hz時為16 nV/√Hz。請注意,傳統(tǒng)電流鏡(紅色曲線)的1/f和寬帶噪聲都要高出1.5至2倍,而調(diào)節(jié)后的總噪聲幾乎保持不變,如其他三根曲線所示。
小信號傳遞函數(shù)
圖13和圖14顯示不同增益與調(diào)節(jié)設(shè)置下的頻率響應(yīng)。請注意,經(jīng)過 RS 調(diào)節(jié)的放大器不穩(wěn)定,且未調(diào)節(jié)情況下的頻率響應(yīng)與電流鏡調(diào)節(jié)后的頻率響應(yīng)相同。
圖13. 不同增益下的未調(diào)節(jié)放大器帶寬
圖14. 電位計處于不同位置時的單位增益帶寬
輸入偏置電流
使用增益配置和檢測電阻測量輸入偏置電流。圖4顯示不同器件、電壓和溫度情況下的典型范圍。
圖4. 輸入偏置電流值
結(jié)論
隨著越來越多的應(yīng)用要求使用具有高輸入阻抗、低噪聲和最小失調(diào)電壓的專業(yè)運算放大器,使用分立式器件針對特定應(yīng)用設(shè)計電路也變得越來越重要。本文敘述僅使用4個分立式器件,且具有可調(diào)輸入失調(diào)電壓功能的高速、低噪聲放大器。文章討論了每一級的設(shè)計考慮因素,并重點介紹了放大器的噪聲性能,以及消除散粒噪聲和1/f噪聲的多種方法。采用運算放大器ADA4897和LSK389 JFET,設(shè)計并測試支持單位增益的放大器,該放大器折合到輸入的噪聲為2 nV/√Hz,且電源電流僅為8 mA。10 mV范圍內(nèi)的高輸入失調(diào)電壓通過AD5292數(shù)字電位計進行數(shù)字調(diào)節(jié)。本文還討論了替代器件,以便適用于不同的應(yīng)用與環(huán)境。
推薦閱讀:
特別推薦
- 增強視覺傳感器功能:3D圖像拼接算法幫助擴大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時代國產(chǎn)IP機遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護問題
- 當過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍牙
藍牙4.0
藍牙模塊
浪涌保護器
雷度電子
鋰電池
利爾達
連接器
流量單位
漏電保護器
濾波電感
濾波器