你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文
關(guān)于積分型ADC的一些知識(shí)
發(fā)布時(shí)間:2020-02-26 責(zé)任編輯:wenwei
【導(dǎo)讀】這種類型的AD轉(zhuǎn)換器可以獲得高分辨率,但是通常這樣做會(huì)犧牲速度。因此,這些轉(zhuǎn)換器不適用于音頻或信號(hào)處理的場(chǎng)合應(yīng)用。他們通常的典型應(yīng)用就是數(shù)字電壓計(jì)和其他需要高精度測(cè)量的儀表。
一個(gè)積分型ADC是一種通過(guò)使用積分器將未知的輸入電壓轉(zhuǎn)換成數(shù)字表示的一種模-數(shù)轉(zhuǎn)換器。在它最基本的實(shí)現(xiàn)中,這個(gè)未知的輸入電壓是被施加在積分器的輸入端,并且持續(xù)一個(gè)固定的時(shí)間段(所謂的上升階段)。然后用一個(gè)已知的反向電壓施加到積分器,這樣持續(xù)到積分器輸出歸零(所謂的下降階段)。這樣,輸入電壓的計(jì)算結(jié)果實(shí)際是參考電壓的一個(gè)函數(shù),定時(shí)上升階段時(shí)間和測(cè)得的下降階段時(shí)間。下降階段時(shí)間的測(cè)量通常是以轉(zhuǎn)換器的時(shí)鐘為單位,所以積分時(shí)間越長(zhǎng),分辨率越高。同樣的,轉(zhuǎn)換器的速度可以靠犧牲分辨率來(lái)獲得提升。
這種類型的AD轉(zhuǎn)換器可以獲得高分辨率,但是通常這樣做會(huì)犧牲速度。因此,這些轉(zhuǎn)換器不適用于音頻或信號(hào)處理的場(chǎng)合應(yīng)用。他們通常的典型應(yīng)用就是數(shù)字電壓計(jì)和其他需要高精度測(cè)量的儀表。
========基本設(shè)計(jì)=======
最基本的積分型ADC電路包含:
● 一個(gè)積分器、
● 一個(gè)選擇開(kāi)關(guān)(用來(lái)選在被測(cè)電壓和參考電壓)、
● 一個(gè)定時(shí)器(用來(lái)決定對(duì)被測(cè)電壓的積分時(shí)間長(zhǎng)度和測(cè)量參考電壓積分消耗時(shí)間)、
● 一個(gè)比較器(用來(lái)進(jìn)行過(guò)零檢測(cè))、
● 一個(gè)控制器、
● 一個(gè)放電開(kāi)關(guān)(這個(gè)根據(jù)實(shí)現(xiàn)形式可有可無(wú),主要用來(lái)對(duì)積分電容進(jìn)行放電,與積分電容并聯(lián))。
上面的所有開(kāi)關(guān)都由轉(zhuǎn)換器的控制器(通常是微處理器或?qū)S玫目刂七壿?,控制器的輸入包括一個(gè)時(shí)鐘信號(hào)(用來(lái)測(cè)量時(shí)間)和一個(gè)比較器的輸出信號(hào)(用來(lái)檢測(cè)積分器的輸出是否歸零)
轉(zhuǎn)換過(guò)程分兩個(gè)階段:上升階段和下降階段。在上升階段,積分器的輸入是被測(cè)電壓,在下降階段,積分器的輸入是已知的參考電壓。在上升階段中,開(kāi)關(guān)選擇被測(cè)電壓進(jìn)入積分器,積分器持續(xù)一個(gè)固定的時(shí)間段進(jìn)行積分,在積分電容上面積累電荷。在下降階段,開(kāi)關(guān)選擇參考電壓進(jìn)入積分器,在這階段測(cè)量積分器輸入歸零的時(shí)間。(譯者:總結(jié)起來(lái)就是先定時(shí)積分,再定值反向積分,測(cè)量反向積分時(shí)間),電路如右圖:
為了使積分器向相反方向積分,參考電壓需要和被測(cè)電壓的極性相反。在大多數(shù)情況下,如果被測(cè)電壓為正,那么參考電壓就為負(fù)。為了能夠處理正負(fù)電壓輸入的情況,需要一個(gè)正向和一個(gè)負(fù)向的參考電壓。具體選擇哪一個(gè)參考電壓取決于上升階段積分結(jié)束后積分器的輸出電壓極性。也就是說(shuō),如果在上升階段結(jié)束時(shí),積分器輸出是負(fù),則需要接入一個(gè)負(fù)向參考電壓(譯者:因?yàn)榻拥氖欠e分器的反向輸入端),如果積分器輸出是正,則需要接入一個(gè)正向參考電壓。
積分器輸出的基本公式如下(假設(shè)是一個(gè)恒定輸入):
假設(shè)在每個(gè)轉(zhuǎn)換過(guò)程的初始電壓都是零,并且積分器在下降階段結(jié)束時(shí)的輸出電壓也是零,我們就可以得到下面兩個(gè)等式來(lái)表示積分器的兩個(gè)階段的輸出:
結(jié)合上面兩個(gè)等式,可以解除Vin,也就是得到了被測(cè)電壓的公式:
從這個(gè)公式可以看出,雙斜坡積分ADC的好處之一很明顯:測(cè)量結(jié)果與電路元件的值(其中的R和C)無(wú)關(guān)。然而,這并不意味著,R和C在雙斜坡積分ADC中不重要(下面將解釋這一問(wèn)題)。
注意到在下圖中,在上升階段電壓是向上升高的,在下降階段電壓是向下降低的。在實(shí)際應(yīng)用中,由于比較器使用的是運(yùn)放的負(fù)反饋,施加一個(gè)正向電壓Vin實(shí)際會(huì)使輸出下降,
所以這里的“上”和“下”可以理解為積分電容充電的過(guò)程。
雙斜坡積分型ADC的分辨率主要由下降階段的時(shí)間長(zhǎng)度和時(shí)間測(cè)量分辨率(例如控制器時(shí)鐘的頻率)來(lái)決定的(譯者:也就是速度和分辨率這一對(duì)矛盾的原因)。期望的分辨率(用bits數(shù)表示) 是滿量程輸入時(shí),下降時(shí)間的最小長(zhǎng)度。(Vin = -Vref)
在滿程輸入的測(cè)量過(guò)程中,積分器輸出的斜坡在上升和下降階段是相同的(方向相反)。也就是上升和下降階段的時(shí)間相等(),總的測(cè)量時(shí)間則為
<img%20border="1"%20alt=""%20src="http: 2="" img.blog.csdn.net="" watermark="" text="" ahr0cdovl2jsb2cuy3nkbi5uzxqvexbvzmx5zxi="/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center"%20width="25"%20height="17"%20/"></img%20border="1"%20alt=""%20src="http:>
。因此,滿程輸入的總的測(cè)量時(shí)間是基于期望的分辨率和控制器的時(shí)鐘頻率的。
如下式:
舉個(gè)栗子:如果期望得到16bits的分辨率,控制器時(shí)鐘頻率是10MHz,那么測(cè)量時(shí)間計(jì)算下來(lái)就是13.1ms(也即是每秒鐘76個(gè)采樣)。采樣時(shí)間可以靠犧牲分辨率得到改善。如果分辨率降低到10bits,那么在同樣的10MHz的時(shí)鐘頻率下,測(cè)量時(shí)間就降低到僅為0.2ms(每秒鐘4900個(gè)采樣)。
========局限性=======
雙斜坡積分型ADC有幾個(gè)局限。對(duì)于基本的雙斜坡ADC來(lái)說(shuō),靠使用更長(zhǎng)的測(cè)量時(shí)間或更高的時(shí)鐘頻率來(lái)任意提高分辨率是不可能的。分辨率被以下條件所限制:
1. 積分器運(yùn)放的范圍。運(yùn)放的軌電壓限制了積分器的輸出電壓。長(zhǎng)時(shí)間的積分器輸入會(huì)導(dǎo)致輸出被限制到一個(gè)最大值,是的任何基于下降時(shí)間的計(jì)算都沒(méi)有意義。因此,應(yīng)基于運(yùn)放的軌電壓、參考電壓和期望的滿程被測(cè)電壓來(lái)小心地選擇積分器的電阻和電容,并且最長(zhǎng)的上升時(shí)間也應(yīng)滿足期望的分辨率。(譯者:實(shí)際就是講積分器飽和的問(wèn)題,后面的電荷平衡技術(shù)將解決這個(gè)問(wèn)題)
2. 作為過(guò)零檢測(cè)的比較器的準(zhǔn)確度。寬帶電路噪聲限值了比較器精確檢測(cè)積分器輸出歸零的能力。Goerke建議一個(gè)典型的限制是比較器分辨率1mV。
3. 積分電容的品質(zhì)。盡管積分電容不需要完美的線性,但卻需要時(shí)間恒定(time-invariant)。介電吸收(Dielectric absorption)會(huì)導(dǎo)致嚴(yán)重問(wèn)題。(譯者:個(gè)人認(rèn)為此處應(yīng)為介質(zhì)吸收。取一個(gè)數(shù)值較大的鉭電容,充電到10V左右,用一個(gè)100Ω的電阻即刻跨接在它兩端,迅速放電。移去電阻,用高阻抗的電壓表觀察電容兩端的電壓,可以看到電容又充電,幾秒后達(dá)到1V左右。介質(zhì)吸收現(xiàn)象可能與介質(zhì)表面的殘留極化有關(guān)。所以積分型ADC的電容應(yīng)選擇高質(zhì)量、低介質(zhì)吸收的電容,如特氟龍介質(zhì))
========改善=======
基本雙斜坡積分型ADC的設(shè)計(jì)在轉(zhuǎn)換速度和分辨率方面有限制。很對(duì)針對(duì)基本設(shè)計(jì)的修改在某種程度上解決了這些問(wèn)題。
針對(duì)上升階段的改進(jìn)
改進(jìn)的雙斜坡
基本雙斜坡設(shè)計(jì)的上升階段會(huì)將被測(cè)電壓固定積分一段時(shí)間。也就是說(shuō),它最終會(huì)在積分電容上建立一個(gè)不確定的電荷量。下降階段測(cè)量這個(gè)不確定的電荷來(lái)確定被測(cè)電壓。對(duì)于一個(gè)滿程輸入,測(cè)量時(shí)間的一半會(huì)被花費(fèi)到上升階段。對(duì)于更小的輸入,相對(duì)總測(cè)量時(shí)間的一個(gè)更大比例的時(shí)間會(huì)被花費(fèi)到上升階段。所以,減少花費(fèi)到上升階段的時(shí)間可以顯著降低總的測(cè)量時(shí)間。(譯者:此處以圖示似乎更容易說(shuō)明問(wèn)題。見(jiàn)下圖)
一個(gè)簡(jiǎn)單的減少上升時(shí)間的方法就是增加充電電荷的積累速度,這可以靠減少輸入電阻值來(lái)實(shí)現(xiàn)。這依然是要積累同等數(shù)量的電荷,只是需要的時(shí)間更少。在下降階段使用同樣的算法,參考右圖,則得到下面的公式:
與基本雙斜坡積分轉(zhuǎn)換器不同,此等式與積分電阻有關(guān)?;蛘?,更重要的是,它與兩個(gè)積分電阻的比值有關(guān)。這種改進(jìn)方法不能改進(jìn)轉(zhuǎn)換器的分辨率(因?yàn)樗鼪](méi)有解決上面提到的分辨率的限值)。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺(jué)傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問(wèn)題
- Honda(本田)與瑞薩簽署協(xié)議,共同開(kāi)發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國(guó)產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問(wèn)題
- 當(dāng)過(guò)壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開(kāi)關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開(kāi)發(fā)工具
開(kāi)關(guān)
開(kāi)關(guān)電源
開(kāi)關(guān)電源電路
開(kāi)關(guān)二極管
開(kāi)關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器