【導(dǎo)讀】PIN二極管在重?fù)诫s的P 區(qū)和 N 區(qū)之間夾有一層輕摻雜的本征區(qū)(I),此類二極管廣泛用于射頻與微波領(lǐng)域。常見應(yīng)用是要求高隔離度和低損耗的微波開關(guān)、移相器和衰減器。在測試設(shè)備、儀器儀表、通信設(shè)備、雷達(dá)和各種軍事應(yīng)用中,可以發(fā)現(xiàn)這類二極管的身影。
開關(guān)電路中,每個 PIN 二極管都有附隨的 PIN 二極管驅(qū)動器或開關(guān)驅(qū)動器,用來提供受控正向偏置電流、反向偏置電壓以及控制信號(通常是一個數(shù)字邏輯命令)與一個或多個 PIN 二極管之間的激活接口。根據(jù)應(yīng)用需要,可以采用分立設(shè)計或?qū)iT IC 實現(xiàn)這種驅(qū)動器功能。
另一方面,也可以使用隨處可得的運算放大器以及箝位放大器、差分放大器等特殊放大器作為備選方案,代替分立 PIN 二極管驅(qū)動電路和昂貴的 PIN 二極管驅(qū)動器 IC。此類運算放大器具有寬帶寬、高壓擺率和充裕的穩(wěn)態(tài)電流,可驅(qū)動 PIN 二極管。本文討論三種不同的 PIN 驅(qū)動器電路,它們采用運算放大器或特殊放大器:AD8037、AD8137 和 ADA4858-3。這些電路設(shè)計用于單刀雙擲 (SPDT) PIN 二極管開關(guān),但也可以對其進(jìn)行修改,以適合其它電路配置。在詳細(xì)說明這些電路之前,本文將先討論 PIN 二極管的特性和使用。
PIN 二極管
PIN 二極管用作電流控制電阻,工作在 RF 和微波頻率,正向偏置("導(dǎo)通")時其電阻只有幾分之一歐姆,反向偏置("截止")時其電阻高達(dá)10 k?以上。與典型的PN 結(jié)二極管不同,PIN 二極管的 P 區(qū)與N區(qū)之間多了一層高阻性本征半導(dǎo)體材料(用 PIN 中的"I"表示),如圖 1 所示。
圖 1. PIN 二極管
當(dāng) PIN 二極管正向偏置時,來自 P 材料的空穴和來自 N 材料的電子注入I 區(qū)。電荷并不能立即完成重新合并;電荷重新合并所需的有限時間量稱為"載流子生命周期"。這導(dǎo)致I 區(qū)中存在凈存儲電荷,因而其電阻會降至某一個值,稱為二極管的有效導(dǎo)通電阻RS(圖 2a)。
當(dāng)施加反向或零偏置電壓時,二極管呈現(xiàn)為一個大電阻 RP它與電容CT 并聯(lián)(圖2b)。通過改變二極管幾何結(jié)構(gòu),可以使 PIN 二極管具有不同的 RS 和 CT 組合,以滿足各種電路應(yīng)用和頻率范圍的需要。
圖2. PIN 二極管等效電路:a) 導(dǎo)通,IBIAS >> 0. b) 截止, VBIAS ≤ 0.
驅(qū)動器提供的穩(wěn)態(tài)偏置電流ISS和反向電壓共同決定RS 和 CT的最終值。圖 3 和圖 4 顯示了典型PIN 二極管系列——M/A-COM MADP 042XX8-130601系列硅二極管的參數(shù)關(guān)系。二極管材料會影響其特性。例如,砷化鎵(GaAs) 二極管幾乎不需要反向偏置就能實現(xiàn)低CT值,如圖 9 所示。
圖3. 硅二極管導(dǎo)通電阻與正向電流的關(guān)系
圖4. 硅二極管電容與反向電壓的關(guān)系
PIN 二極管中存儲的電荷可以利用公式1進(jìn)行近似計算。
(1)
其中:
QS = 存儲的電荷
τ = 二極管載流子生命周期
ISS = 穩(wěn)態(tài)電流
要導(dǎo)通或截止二極管,必須注入或移除所存儲的電荷。驅(qū)動器的工作就是以極快的速度注入或移除所存儲的電荷。如果開關(guān)時間小于二極管的載流子生命周期,則可以利用公式2 近似計算實現(xiàn)快速開關(guān)所需的峰值電流(IP).
(2)
其中:
t = 所需的開關(guān)時間
ISS = 驅(qū)動器所提供的穩(wěn)態(tài)電流,用來設(shè)置PIN 二極管導(dǎo)通電阻RS
τ = 載流子生命周期
驅(qū)動器注入或移除電流(或"尖峰電流")i 可以表示為公式3。
(3)
其中:
C = 驅(qū)動器輸出電容(或"尖峰電容")的值
v = 輸出電容上的電壓
dv/dt = 電容上的電壓的時間變化率
PIN二極管偏置接口
將開關(guān)驅(qū)動器控制電路與PIN 二極管相連,以便通過施加正向或反向偏置來開關(guān)二極管,是一項具有挑戰(zhàn)性的工作。偏置電路通常使用一個低通濾波器,它位于 RF 電路與開關(guān)驅(qū)動器之間。圖5 顯示了一個單刀雙擲(SPDT) RF 開關(guān)及其偏置電路。當(dāng)設(shè)置妥當(dāng)時,濾波器L1/C2 和L3/C4 允許將控制信號施加于PIN 二極管D1–D4,控制信號與RF 信號(從RF IN 切換至PORT 1 或PORT 2)的相互影響極少。這些元件允許頻率相對較低的控制信號通過PIN 二極管,但會阻止高頻信號逃離RF 信號路徑。不正常的RF 能量損耗意味著開關(guān)的插入損耗過高。電容C1、C3 和C5 阻止施加于二極管的直流偏置侵入RF 信號路徑中的電路。直流接地回路中的電感L2 允許直流和低頻開關(guān)驅(qū)動器信號輕松通過,但對于RF 和微波頻率則會呈現(xiàn)高阻抗,從而降低RF 信號損耗。
圖5. 典型單刀雙擲(SPDT) RF 開關(guān)電路
偏置電路、RF 電路和開關(guān)驅(qū)動器電路全都會發(fā)生交互影響彼此的性能,因此像所有設(shè)計一樣,權(quán)衡考慮各種因素十分重要。例如,較大的C2和C4 (>20 pF) 對RF 性能有利,但對驅(qū)動器則是麻煩,因為大電容會導(dǎo)致上升沿和下降沿較慢??焖匍_關(guān)對大多數(shù)應(yīng)用都有利;因此,為了實現(xiàn)最佳驅(qū)動器性能,電容必須極小,但為了滿足RF 電路要求,電容又必須足夠大。
傳統(tǒng)PIN 二極管驅(qū)動器
PIN 二極管驅(qū)動器有各種形狀和尺寸。圖6 給出了一個可提供高開關(guān)速度的典型分立開關(guān)驅(qū)動器的原理圖。這種驅(qū)動器既可以采用"片線"(混合)結(jié)構(gòu)來實現(xiàn),也可以采用"表貼"(SMT) 器件來實現(xiàn);前者非常昂貴,后者雖不昂貴,但需要的印刷電路板(PCB) 面積多于混合結(jié)構(gòu)。
圖6. 分立開關(guān)驅(qū)動器電路
還有專用開關(guān)驅(qū)動器集成電路(IC);這些 IC 十分緊湊,提供TTL 接口,并具有良好的性能,但靈活性有限,而且往往很昂貴。
還有一種開關(guān)驅(qū)動器架構(gòu)應(yīng)當(dāng)考慮,即采用運算放大器。運算放大器開關(guān)驅(qū)動器的明顯優(yōu)勢在于其自身的靈活性,可以輕松地對其進(jìn)行配置,以適應(yīng)不同的應(yīng)用、電源電壓和條件,為設(shè)計人員提供豐富的設(shè)計選項。
運算放大器PIN 二極管驅(qū)動器
運算放大器電路是一種很有吸引力的PIN 二極管驅(qū)動備選方案。除靈活性外,這種電路常常還能以接近或超過1000 V/μs的躍遷速度工作。下面將介紹三種不同的RF PIN 二極管放大器驅(qū)動電路。所選放大器雖然在根本特征上各不相同,但都能執(zhí)行類似的功能。這些放大器電路可以驅(qū)動硅或砷化鎵(GaAs) PIN 二極管,但各有各的特點。
AD8037 —箝位放大器
該電路能以最高10 MHz 的頻率工作,具有出色的開關(guān)性能,總傳播延遲為15 ns。通過改變增益或箝位電壓,可以調(diào)整輸出電壓和電流,以適應(yīng)不同的應(yīng)用。
箝位放大器AD80372原本設(shè)計用于驅(qū)動ADC,可提供箝位輸出以保護(hù)A D C 輸入不發(fā)生過驅(qū)。圖7 所示配置用一對AD8037(U2 和 U3)驅(qū)動 PIN 二極管。
圖7. AD8037 PIN 二極管驅(qū)動器電路
本例中,U2 和U3 采用同相配置,增益為4。利用AD8037 的獨特輸入箝位特性,可以實現(xiàn)極其干凈和精確的箝位。它可以線性放大輸入信號,最高可達(dá)增益乘以正負(fù)箝位電壓((VCH 和 VCL)。當(dāng)增益為4 且箝位電壓為±0.75 V 時,如果輸入電壓小于±0.75 V,則輸出電壓等于輸入電壓的4 倍;如果輸入電壓大于±0.75 V,則輸出電壓箝位在最大值±3 V。這一箝位特性使得過驅(qū)恢復(fù)非??欤ǖ湫椭敌∮? ns)。箝位電壓(VCH 和 VCL) 由分壓器 R2、R3、R7 和 R8 確定。
數(shù)字接口由74F86 XOR 邏輯門(U1) 實現(xiàn),它提供U2 和U3 所用的驅(qū)動信號,兩路互補輸出之間的傳播延遲偏斜極小。電阻網(wǎng)絡(luò)R4、R5、R6 和R9 將TTL輸出電平轉(zhuǎn)換為大約±1.2 V,然后通過R10 和 R12饋送給 U2 和 U3。
U2 和 U3 的±1.2-V 輸入提供 60% 過驅(qū),以確保輸出會進(jìn)入箝位狀態(tài)(4 ×0.75 V)。因此,硅PIN 二極管驅(qū)動器的輸出電平設(shè)為±3 V。電阻 R16 和 R17 限制穩(wěn)態(tài)電流。電容 C12 和C13 設(shè)置 PIN 二極管的尖峰電流。
AD8137 —差分放大器
差分放大器(本例所用的AD8137)可以低成本提供出色的高速開關(guān)性能,并使設(shè)計人員能夠十分靈活地驅(qū)動各種類型的RF 負(fù)載。有各種各樣的差分放大器3 可供使用,包括速度更快、性能更高的一些器件。
高速差分放大器 AD81374 通常用于驅(qū)動 ADC,但也可以用作低成本、低功耗 PIN 二極管驅(qū)動器。其典型開關(guān)時間為 7 ns 至 11 ns,其中包括驅(qū)動器和 RF 負(fù)載的傳播延遲。它提供互補輸出,功能多樣,可以替代昂貴的傳統(tǒng)驅(qū)動器。
圖 8 所示電路將單端TTL輸入(0 V 至 3.5 V)轉(zhuǎn)換為互補±3.5V 信號,同時可使傳播延遲最小。TTL 信號放大 4 倍,在 AD8137 輸出端產(chǎn)生所需的±3.5V 擺幅。TTL 信號的中點(或共模電壓)為 1.75 V;必須將同樣的電壓施加于R2,作為參考電壓VREF,以免在放大器輸出端引入共模失調(diào)誤差。最好從一個低源阻抗驅(qū)動此點;任何串聯(lián)阻抗都會增加到R1 上,從而影響放大器增益。
圖8. PIN 二極管驅(qū)動器原理圖
輸出電壓增益可由公式4 計算:
(4)
為正確端接脈沖發(fā)生器的輸入阻抗,使之為50 ?,需要確定差分放大器電路的輸入阻抗。這可以利用公式 5 計算,得出RT = 51.55 ?, 與之最接近的標(biāo)準(zhǔn) 1% 電阻值為 51.1 ?。對于對稱的輸出擺幅,兩個輸入網(wǎng)絡(luò)的阻抗必須相同。這意味著,反相輸入阻抗必須將信號源的Thévenin 阻抗和端接電阻納入增益設(shè)置電阻R2。有關(guān)詳情,請參閱應(yīng)用筆記 AN-10265.
(5)
圖8 中, R2 約比R1 大20 ?,以補償源電阻RS與端接電阻RT的并聯(lián)組合所引入的額外電阻(25 ?)。將R4 設(shè)為1.02 k?(最接近1.025 k?的標(biāo)準(zhǔn)電阻值),以確保兩個電阻比相等,避免引入共模誤差。
輸出電平轉(zhuǎn)換很容易利用AD8137 的VOCM引腳來實現(xiàn),該引腳設(shè)置直流輸出共模電平。本例中, VOCM 引腳接地,以提供關(guān)于地的對稱輸出擺幅。
電阻R5 和 R6 設(shè)置穩(wěn)態(tài) PIN 二極管電流,如公式 6 所示。
(6)
電容C5 和 C6 設(shè)置尖峰電流,該電流有助于注入和移除PIN 二極管中存儲的電荷??梢愿鶕?jù)特定二極管負(fù)載要求,調(diào)整這些電容的值,實現(xiàn)性能優(yōu)化。尖峰電流可以由公式7 計算。
(7)
ADA4858-3 —內(nèi)置電荷泵的三通道運算放大器
許多應(yīng)用只提供一個電源,這常常令電路設(shè)計人員感到為難,尤其是當(dāng)需要在PIN 電路中提供低關(guān)斷電容時。這種情況下,硅或 GaAs PIN 二極管驅(qū)動電路可以使用片上集成電荷泵的運算放大器,而不需要外部負(fù)電源;其好處是可以顯著節(jié)省空間、功耗和預(yù)算。
高速電流反饋型三通道放大器ADA4858-36就是這樣一種器件,它具有出色的特性,片上集成電荷泵,輸出擺幅可以達(dá)到地電壓以下–3 V 至 –1.8 V(具體取決于電源電壓和負(fù)載)。該器件十分魯棒,可以真正為其它電路提供最高50 mA 的負(fù)電源電流。
ADA4858-3 為單電源系統(tǒng)中的互補PIN 二極管微波開關(guān)驅(qū)動問題提供了一種獨特的解決方案?;仡檲D 4,從中可以看出:即使很少量的反向偏置也有助于降低二極管電容 CT,具體取決于PIN 二極管的類型。此類驅(qū)動器對GaAs PIN 二極管很有利,因為這種二極管通常不需要很大的負(fù)偏置就能使關(guān)斷電容(CT)保持較小的值(圖 9)。
圖9. GaAs CT電容與電壓的關(guān)系
圖10 所示電路用ADA4858-3 作為 PIN 二極管驅(qū)動器??梢栽谳斎攵嗽黾右粋€緩沖門,使該電路兼容 TTL 或其它邏輯。對此電路的要求是將 TTL 0V 至 3.5V 輸入信號擺幅轉(zhuǎn)換為互補 –1.5V至 +3.5V擺幅,用于驅(qū)動 PIN 二極管。
圖10. ADA4858-3 用作 PIN 二極管驅(qū)動器
R1、R2、R3 和 U1C 形成該電路的 –1.5V 基準(zhǔn)電壓,內(nèi)部負(fù)電壓CPO 由片內(nèi)電荷泵產(chǎn)生。電容C3 和C4 是電荷泵工作所必需的。負(fù)基準(zhǔn)電壓隨后通過分壓器(R5 和 R9)與VTTL 輸入以無源方式合并。所產(chǎn)生的電壓(VRD)出現(xiàn)在U1B 的同相輸入端。U1B 輸出電壓可以利用公式8 計算。
(8)
其中:
(9)
負(fù)基準(zhǔn)電壓也被饋送至放大器U1A,在其中與 TTL 輸入合并,所得輸出電壓V2 可以利用公式10 計算。
(10)
這些放大器采用電流反饋架構(gòu),因此必需注意反饋電阻的選擇,反饋電阻對于放大器的穩(wěn)定性和頻率響應(yīng)有著重要作用。對于本應(yīng)用,反饋電阻設(shè)為 294 ?,這是數(shù)據(jù)手冊所推薦的值。輸出電壓V1 和V2 分別可以用公式8 和公式10 表示。輸出尖峰電流量可以利用公式3 和電容C5、C6 上的電壓確定。設(shè)置 PIN 二極管導(dǎo)通電阻的穩(wěn)態(tài)電流由 R11 與 R12 上的電壓差確定,并取決于 PIN 二極管曲線和系統(tǒng)要求。
對于本應(yīng)用,RF 開關(guān)負(fù)載為 MASW210B-1 硅 PIN 二極管單刀雙擲(SPDT)開關(guān),用于微波下變頻器的前端(圖 11)。
圖 11. 下變頻器功能框圖
開關(guān)輸出波形和TTL輸入信號如圖12 所示。請注意,上升沿和下降沿非常陡峭。由于開關(guān)的開關(guān)時間要求相對較慢(約為50ns),因此本應(yīng)用沒有使用尖峰電容C5和C6。設(shè)置穩(wěn)態(tài)二極管電流的電阻 R11 和 R12 均為 330 ?。
圖12. 顯示 RF 開關(guān)速度的波形
圖 13. 下變頻器的頻譜響應(yīng)
圖13 顯示了下變頻器前端的頻譜響應(yīng);開關(guān)SW1 位于固定位置,以消除插入損耗。請注意,圖中不存在諧波或邊帶,充分表明沒有明顯的 100 kHz 開關(guān)偽像從 ADA4858-3 片內(nèi)電荷泵散出,這是在此類應(yīng)用中使用這些器件的重要考慮因素。
結(jié)論
如以上三例所示,運算放大器可以創(chuàng)造性地用作傳統(tǒng)放大器的替代方案,其性能與 PIN 二極管專用驅(qū)動 IC 相當(dāng)。此外,運算放大器可以提供增益調(diào)整和輸入控制功能,而且當(dāng)使用內(nèi)置電荷泵的運算放大器時,無需負(fù)電源,這就提高了PIN 二極管的驅(qū)動器和其它電路的設(shè)計靈活性。運算放大器易于使用和配置,可以相對輕松地解決復(fù)雜問題。
參考電路
Hiller, Gerald. Design with PIN Diodes. M/A-COM Application Note AG312.
Understanding RF/Microwave Solid State Switches and Their Applications. Agilent Application Note.
致謝
開關(guān)速度和頻譜數(shù)據(jù)、RF 負(fù)載以及測試設(shè)備由美國新罕布什爾州哈德遜Sage Laboratories友情提供。首席技術(shù)官 Tony Cappello 為測試提供了便利,工程副總裁 David Duncan 提供了技術(shù)協(xié)助。
推薦閱讀: