你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量

發(fā)布時(shí)間:2018-05-25 來(lái)源:Steve Sandler 責(zé)任編輯:wenwei

【導(dǎo)讀】在設(shè)計(jì)或優(yōu)化電壓調(diào)節(jié)模塊 (VRM)時(shí),我們需要其輸出阻抗數(shù)據(jù)以及濾波電感和電容的阻抗數(shù)據(jù),以便掌握完整的仿真模型。本文介紹的擴(kuò)展范圍技術(shù)提供了調(diào)整測(cè)量數(shù)據(jù)以優(yōu)化測(cè)量窗口的方法。這種測(cè)量方法的好處是,在測(cè)量低功耗VRM負(fù)載時(shí),擴(kuò)展電阻可以減少負(fù)載。此技術(shù)也可用于測(cè)量參考電壓和閉環(huán)運(yùn)放的輸出阻抗。
 
在設(shè)計(jì)或優(yōu)化VRM(電壓調(diào)節(jié)模塊)時(shí),我們需要其輸出阻抗數(shù)據(jù)及濾波電感和電容的阻抗數(shù)據(jù),以便掌握完整的仿真模型。遺憾的是,供應(yīng)商所提供的關(guān)于這些器件的數(shù)據(jù)通常不完整或有錯(cuò),或者難以根據(jù)測(cè)量設(shè)置來(lái)解讀。因此,我們不得不自己收集數(shù)據(jù)。
 
測(cè)量需要在整個(gè)所需要的頻率范圍內(nèi)進(jìn)行,視應(yīng)用不同,范圍通常從幾kHz到約1GHz。由于這一頻率范圍非常寬,我們通常采用基于S參數(shù)的測(cè)量。高性能仿真器可直接將S參數(shù)器件測(cè)量整合進(jìn)AC、DC、瞬態(tài)及諧波平衡仿真中,同時(shí)包括有限元PCB模型。
 
雖然非常有用,但標(biāo)準(zhǔn)的S參數(shù)測(cè)量通常是不夠的。真正需要的是更大的范圍,即部分S2p測(cè)量。我會(huì)解釋為什么需要它以及如何進(jìn)行這種改進(jìn)的測(cè)量。
 
S參數(shù)是在很寬的頻率范圍內(nèi)執(zhí)行測(cè)量的簡(jiǎn)單方法,它使用固定阻值端口而不是高阻探頭進(jìn)行測(cè)量。用S參數(shù)測(cè)量阻抗有兩種選擇,一種是反射測(cè)量,另一種是THRU測(cè)量。
 
一個(gè)端口還是兩個(gè)端口?為什么是部分的?
 
反射或單端口測(cè)量是最簡(jiǎn)單的,因?yàn)樗恍枰桓娎|。但是它需要復(fù)雜的校準(zhǔn),通常包括用于測(cè)量的端口的OPEN校準(zhǔn)、SHORT校準(zhǔn)和LOAD或MATCH校準(zhǔn)。大多數(shù)VNA(矢量網(wǎng)絡(luò)分析儀)包括從S參數(shù)反射測(cè)量(S11或S22)到阻抗的轉(zhuǎn)換,但非常簡(jiǎn)單。以單端口為例,對(duì)于給定參考阻抗Zref(典型值50Ω)的反射,S11與器件阻抗之間的關(guān)系如表1所示。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
表1:?jiǎn)味丝谵D(zhuǎn)換。
 
我們可以通過(guò)將要測(cè)量的設(shè)備與測(cè)量端口串聯(lián)或并聯(lián)來(lái)執(zhí)行雙端口測(cè)量。表2列出了S21與串聯(lián)和并聯(lián)配置的器件阻抗之間的關(guān)系。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
表2:雙端口轉(zhuǎn)換。
 
DC接地回路
 
由于VNA的RF接地和互連測(cè)量電纜的串聯(lián)電阻導(dǎo)致的直流接地環(huán)路,致使雙端口分流貫通(shunt-thru)測(cè)量出現(xiàn)另一個(gè)問(wèn)題。Keysight E5061B VNA在低頻增益相位端口上具有半浮動(dòng)輸入,可消除直流接地環(huán)路、實(shí)現(xiàn)高達(dá)30MHz的低阻抗測(cè)量。對(duì)于E5061B高頻端口和其它一般的VNA來(lái)說(shuō),必須使用諸如Picotest J2102A這樣的共模同軸變壓器將直流接地回路縮至最小。否則,低頻測(cè)量會(huì)不準(zhǔn)確。
 
這些阻抗測(cè)量選項(xiàng)的設(shè)置如圖1所示。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖1:?jiǎn)味丝诤碗p端口阻抗測(cè)量的基本原理圖。
 
圖2中的仿真顯示了每種測(cè)量技術(shù)的S參數(shù)的大小,它是器件阻抗的函數(shù)。隨著S參數(shù)值接近1.0,所有測(cè)量值都失去靈敏性。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖2:作為器件阻抗函數(shù)的S參數(shù)量值。
 
圖3顯示了S參數(shù)量值從0.95到1.0的更高分辨率視圖。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖3:作為器件阻抗函數(shù)的S參數(shù)量值的更高分辨率視圖。
 
將可測(cè)量的S參數(shù)(S11、S22或S21)設(shè)置為最小40E-6,可獲得合理的信噪比余量和0.95的最大值。每個(gè)測(cè)量的范圍如表3所示。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
表3:測(cè)量阻抗范圍。
 
我們需要哪個(gè)范圍?
 
我們通常會(huì)測(cè)量VRM、PDN(功率分配網(wǎng)絡(luò))、電容器和電感器,所以最小阻抗測(cè)量一般在mΩ范圍內(nèi)——無(wú)論是電感器DCR(直流阻值)、VRM輸出阻抗還是電容器ESR(等效串聯(lián)阻抗)。這需要雙端口分流測(cè)量。
 
測(cè)得的S參數(shù)文件必須在整個(gè)仿真頻率范圍內(nèi)有效。將測(cè)量范圍設(shè)置為1kHz至500MHz,并使用被稱為“實(shí)際測(cè)量范圍”的方法,我們可以確定使用雙端口分流測(cè)量能夠測(cè)量的最大電感或電容。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
 
使用雙端口分流測(cè)量,可測(cè)量的最小電容值為800nF,無(wú)法測(cè)量高頻去耦電容。可以在500MHz測(cè)量的最大電感僅為60nH。即使假設(shè)電感的諧振頻率為100MHz,可測(cè)量的最大電感也小于1μH,從而將鐵氧體磁珠和大多數(shù)輸出濾波電感的測(cè)量排除在外。
 
進(jìn)行此測(cè)量時(shí)會(huì)出現(xiàn)另一個(gè)問(wèn)題。 S21、S11和S22都測(cè)量相同器件,因此測(cè)量的阻抗范圍相同。如上所述,S11和S22的測(cè)量值低于單端口測(cè)量的范圍。例如,在測(cè)量電感器時(shí),DCR將作為S11和S22測(cè)量。在測(cè)量電容器時(shí),將使用S11和S22測(cè)量ESR。這些單端口測(cè)量值在器件典型的低阻抗水平下是無(wú)效的。這就是為什么我們需要“部分”雙端口直通測(cè)量的原因。我們只保留S21測(cè)量值,并刪除S11和S22,因?yàn)樗鼈冊(cè)谧杩顾降陀?.5Ω時(shí)無(wú)效。
 
一些儀器允許將測(cè)量結(jié)果保存為T(mén)ouchstone阻抗文件,這是一種部分雙端口S參數(shù)文件。
 
擴(kuò)展雙端口范圍
 
我們可以使用串聯(lián)電阻來(lái)擴(kuò)展測(cè)量范圍,以便有效增加端口參考阻抗。這可以讓我們測(cè)量去耦電容和更大的電感。圖4顯示了這種測(cè)量的結(jié)果。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖4:添加串聯(lián)電阻來(lái)擴(kuò)展雙端口分流測(cè)量的阻抗范圍。
 
例如,增加一個(gè)450Ω串聯(lián)電阻可使參考阻抗達(dá)到500Ω,從而將測(cè)量范圍擴(kuò)展10倍。在某些情況下,可通過(guò)使用衰減傳輸線示波器探頭來(lái)容納添加的串聯(lián)電阻。1、5、10和20的縮放系數(shù)可作為單端口探頭購(gòu)買。一對(duì)探頭可用于進(jìn)行雙端口擴(kuò)展范圍測(cè)量。表4列出了各種串聯(lián)電阻值的測(cè)量范圍。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
表4:各種串聯(lián)電阻值的測(cè)量阻抗范圍。
 
表5列出了所包含的串聯(lián)電阻的阻抗變換。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
表5:包括串聯(lián)電阻的阻抗轉(zhuǎn)換。
 
對(duì)于任何一種極端測(cè)量范圍條件下的測(cè)量,請(qǐng)務(wù)必執(zhí)行完整的測(cè)量夾具移除校準(zhǔn)或?qū)蓚€(gè)部件進(jìn)行完整的單端口校準(zhǔn)以及THRU校準(zhǔn)。如果還包含串聯(lián)電阻,則應(yīng)在設(shè)置中包含串聯(lián)電阻并執(zhí)行THRU校準(zhǔn)。
 
在作為擴(kuò)展范圍雙端口阻抗測(cè)量的示例中,使用了0.1μF陶瓷電容。圖5顯示結(jié)果高達(dá)30MHz。阻抗測(cè)量范圍可能大于1kΩ,或低于9mΩ ESR。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖5: RS=200Ω時(shí)0.1μF電容的測(cè)量。
 
高頻、低阻抗測(cè)量對(duì)非常小的夾具電感都非常敏感;而高頻、高阻抗測(cè)量也對(duì)極小的夾具電容非常敏感。在高達(dá)1GHz的頻率下測(cè)量較小的1nF電容結(jié)果如圖6所示。
 
改進(jìn)不理想的電容、電感和DC/DC阻抗測(cè)量
圖6:該圖顯示了在高達(dá)1GHz的頻率下1nF電容的測(cè)量結(jié)果。電容ESL結(jié)合約1pF的SMA連接器電容產(chǎn)生共振。
 
850MHz的共振是低質(zhì)量SMA連接器的約1pF額外電容造成的。為了在這些頻率下進(jìn)行精確測(cè)量,我們需要更好的連接器和/或需要從測(cè)量中校準(zhǔn)多余的電容。
 
結(jié)論
 
擴(kuò)展范圍技術(shù)和僅保存S21數(shù)據(jù)或Touchstone Z數(shù)據(jù)文件提供了調(diào)整測(cè)量以優(yōu)化測(cè)量窗口的方法。這種測(cè)量方法的額外好處是,在測(cè)量低功率VRM時(shí),擴(kuò)展電阻可以減少負(fù)載。此技術(shù)也可用于測(cè)量電壓基準(zhǔn)和閉環(huán)運(yùn)放的輸出阻抗,而且也可以支持Picotest非侵入式穩(wěn)定性測(cè)量。
 
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
 
 
推薦閱讀:
 
皮膚阻抗分析優(yōu)化主動(dòng)和被動(dòng)給藥
如何防止系統(tǒng)受損?從電源排序入手
麥肯錫報(bào)告:2030汽車行業(yè)革命與遠(yuǎn)景
深度報(bào)告|手術(shù)機(jī)器人的臨床、市場(chǎng)及技術(shù)發(fā)展調(diào)研
探秘電子皮膚——觸覺(jué)傳感器
要采購(gòu)電容器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉