你的位置:首頁(yè) > 電路保護(hù) > 正文

電子應(yīng)用中的潛在熱源及各種熱管理方法

發(fā)布時(shí)間:2024-02-20 來(lái)源:貿(mào)澤電子 責(zé)任編輯:lina

【導(dǎo)讀】電子元器件不喜歡在高溫下運(yùn)行。任何表現(xiàn)出內(nèi)部自發(fā)熱效應(yīng)的元器件,都會(huì)導(dǎo)致自身和周?chē)渌骷目煽啃越档停L(zhǎng)期過(guò)熱甚至還可能導(dǎo)致印刷電路板(PCB)變形,降低與其他元器件的連接完整性,并影響走線阻抗。通常情況下,容易產(chǎn)生廢熱的元器件包括電源和各種形式的功率放大器[音頻或射頻(RF)],但現(xiàn)代片上系統(tǒng)(SoC)、電源轉(zhuǎn)換模塊和高性能微處理器也會(huì)產(chǎn)生大量?jī)?nèi)部熱量。


電子元器件不喜歡在高溫下運(yùn)行。任何表現(xiàn)出內(nèi)部自發(fā)熱效應(yīng)的元器件,都會(huì)導(dǎo)致自身和周?chē)渌骷目煽啃越档停L(zhǎng)期過(guò)熱甚至還可能導(dǎo)致印刷電路板(PCB)變形,降低與其他元器件的連接完整性,并影響走線阻抗。通常情況下,容易產(chǎn)生廢熱的元器件包括電源和各種形式的功率放大器[音頻或射頻(RF)],但現(xiàn)代片上系統(tǒng)(SoC)、電源轉(zhuǎn)換模塊和高性能微處理器也會(huì)產(chǎn)生大量?jī)?nèi)部熱量。


尋找熱源


熱管理是電子設(shè)計(jì)的一個(gè)重要方面,因?yàn)樗兄谡{(diào)節(jié)電子元器件的溫度,防止過(guò)熱造成損壞。一些電子元器件在日常運(yùn)行中會(huì)產(chǎn)生熱量,如果這些熱量得不到充分散發(fā),就會(huì)縮短它們的整體使用壽命,或造成永久性損壞。熱管理的目標(biāo)就是要讓電子元器件維持在安全工作溫度下,確保其長(zhǎng)期可靠性和性能。產(chǎn)生的這些熱量實(shí)際上是一種能量損失,表明能源沒(méi)有得到充分利用。我們將在后文中了解到散熱可以采用的各種方法,包括使用風(fēng)扇實(shí)現(xiàn)強(qiáng)制風(fēng)冷和使用散熱器實(shí)現(xiàn)對(duì)流散熱。


要實(shí)施熱管理,就必須了解設(shè)計(jì)中采用的每個(gè)元器件的安全工作溫度范圍。數(shù)據(jù)手冊(cè)中通常會(huì)給出溫度下限和上限之間的范圍,這個(gè)范圍通常稱為安全工作區(qū)(SOA),它定義了元器件能夠可靠運(yùn)行而不會(huì)出現(xiàn)不可預(yù)測(cè)行為或過(guò)早老化的溫度范圍。此外,電路正常工作的環(huán)境溫度也是一個(gè)重要的考慮因素。


可能產(chǎn)生多余熱量的應(yīng)用和元器件包括以下幾種:

電源轉(zhuǎn)換:電源的作用是將電網(wǎng)的交流(AC)電壓轉(zhuǎn)換為較低的直流(DC)電壓,這個(gè)過(guò)程中總會(huì)產(chǎn)生一些損耗。電源的效率通常因負(fù)載條件和轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)而異。例如,XP Power ASB160 160W AC/DC開(kāi)關(guān)模式電源的最大滿載電源效率為91%至93%。這一規(guī)格表明,160W的線路輸入能量中最多有9%的能量(即14.4W)需要耗散。電源中可能的熱源包括開(kāi)關(guān)MOSFET、二極管和電感器。


電機(jī)驅(qū)動(dòng)器:大功率工業(yè)電機(jī)柵極驅(qū)動(dòng)器電路中的MOSFET會(huì)產(chǎn)生大量廢熱。半導(dǎo)體或集成模塊的末級(jí)通常是主要熱源,需要安裝散熱器和其他散熱元器件。MOSFET或其他功率半導(dǎo)體在傳導(dǎo)過(guò)程中的內(nèi)部串聯(lián)電阻可能并不大,但在大電流、高壓應(yīng)用中,它們產(chǎn)生的熱量仍然會(huì)相當(dāng)可觀。


無(wú)源元器件自發(fā)熱:許多人都知道電容器、電阻器和電感器等無(wú)源元器件會(huì)有內(nèi)部自發(fā)熱的問(wèn)題。也許每個(gè)零件損失的能量都不多,但這些零件的使用量往往都很大,因而會(huì)成為重要的熱源。


放大:任何基于半導(dǎo)體或模塊的放大電路都會(huì)產(chǎn)生一定的熱量,而音頻和射頻放大器是其中最主要的兩種。放大器的效率和輸入功率決定了需要耗散的最大熱量。不同的放大器拓?fù)浣Y(jié)構(gòu)有不同的效率,因此必須要了解各種用例中可能的峰值功率以及放大器的工作效率。


PCB走線和互連:在峰值負(fù)載條件下,PCB走線的阻抗總是有可能產(chǎn)生熱量。PCB走線的寬度和布局應(yīng)根據(jù)最大工作條件進(jìn)行計(jì)算,否則有可能出現(xiàn)局部發(fā)熱、變形乃至起火。同樣,電路板互連器件若長(zhǎng)期負(fù)載過(guò)高,也會(huì)在連接器端子處產(chǎn)生熱量,導(dǎo)致?lián)p壞乃至起火。


除了檢查元器件數(shù)據(jù)手冊(cè)中的安全工作溫度和了解電路參數(shù)外,還可以使用熱成像儀(圖1)獲取主要發(fā)熱元器件的準(zhǔn)確圖像。


電子應(yīng)用中的潛在熱源及各種熱管理方法

圖1:顯示重要熱源的PCB熱紅外圖像(圖源:Teledyne Flir)


熱對(duì)元器件可靠性的影響


高溫會(huì)對(duì)元器件的可靠性產(chǎn)生巨大影響。圖2所示為額定溫度+85°C和+105°C的多層陶瓷電容器(MLCC)的預(yù)計(jì)壽命可靠性。從中可見(jiàn),當(dāng)工作溫度為50°C時(shí),額定溫度+85°C的MLCC使用壽命為40年;如果平均工作溫度升高10°C至60°C,那么它的使用壽命就會(huì)縮短至10年。



電子應(yīng)用中的潛在熱源及各種熱管理方法

圖2:溫度對(duì)MLCC壽命的影響(圖源:Murata)


對(duì)于任何系統(tǒng),可靠性的量化標(biāo)準(zhǔn)都是平均故障間隔時(shí)間(MTBF),它是根據(jù)元器件可靠性參數(shù)計(jì)算出來(lái)的。過(guò)熱會(huì)導(dǎo)致平均工作溫度升高,進(jìn)而降低元器件的MTBF。


此外,許多半導(dǎo)體元器件和電池都會(huì)出現(xiàn)熱失控現(xiàn)象。在這種連鎖反應(yīng)現(xiàn)象中,電流會(huì)因溫度升高而增大,這就形成了惡性循壞,從而導(dǎo)致元器件故障、系統(tǒng)過(guò)載和火災(zāi)。


熱管理技術(shù)


散熱有多種方式,包括傳導(dǎo)和對(duì)流。傳導(dǎo)是指熱量(熱能)從一個(gè)物體傳遞到另一個(gè)物體。將熱能從高溫元器件傳導(dǎo)到低溫物體,就可以降低元器件的溫度。傳導(dǎo)是最有效的熱傳遞方法,因?yàn)樗璧谋砻娣e最小。

對(duì)流冷卻利用移動(dòng)的氣流,將熱量從物體帶到周?chē)目諝庵?。?dāng)空氣帶走熱量時(shí),會(huì)吸入更多的空氣,從而增加氣流并降低熱源的溫度。氣流可以自然產(chǎn)生,也可以強(qiáng)制產(chǎn)生;例如,使用風(fēng)扇就可以加快散熱。此外,散熱器可以增加元器件的有效表面積,提高散熱量。


熱阻抗和熱界面材料


熱阻抗衡量的是材料的導(dǎo)熱效率,是熱管理計(jì)算中的一個(gè)重要參數(shù)。例如,導(dǎo)熱墊、凝膠和糊劑等熱界面材料(TIM)可改善功率MOSFET之間的熱傳導(dǎo)。其中一些材料在導(dǎo)熱的同時(shí),還能實(shí)現(xiàn)電隔離。Würth Elektronik就可以提供多種這樣的熱界面材料(圖3)。例如,WE-TINS系列是一種薄硅膠墊,可在電子元器件和散熱組件之間實(shí)現(xiàn)電絕緣,同時(shí)促進(jìn)熱量傳導(dǎo);WE-TGFG系列在泡沫芯外包裹了一層合成石墨,是一種導(dǎo)熱性高、不含硅膠的熱擴(kuò)散替代材料,可用于填充垂直間隙。


電子應(yīng)用中的潛在熱源及各種熱管理方法

圖3:Würth Elektronik提供的部分熱界面材料(圖源:Würth Elektronik)


此外,Panasonic也提供一系列熱管理解決方案,EYG-R石墨墊就是其中的一款,具有安裝簡(jiǎn)便、可靠性高和熱阻低的特點(diǎn),因?yàn)槠湟粋?cè)表面更加光滑,熱接觸更良好。這些石墨墊具有較高的可壓縮性,能有效填充發(fā)熱和散熱器件之間的空隙,從而實(shí)現(xiàn)更好的熱傳導(dǎo)。


散熱器


散熱器有豐富多樣的形狀和尺寸。其中,既有專門(mén)設(shè)計(jì)用于特定功率半導(dǎo)體和IC/SoC封裝的產(chǎn)品,也有其他適用于行業(yè)標(biāo)準(zhǔn)模塊的產(chǎn)品,比如Advanced Thermal Solutions Inc.的ATS maxiFLOW系列散熱器,就是專為全磚DC/DC轉(zhuǎn)換器模塊而設(shè)計(jì)的。


CUI Devices還提供各種適用于半導(dǎo)體封裝和模塊的散熱器。為幫助用戶進(jìn)行選擇,CUI還提供了散熱器選擇指南。


風(fēng)扇


風(fēng)扇可以提供流過(guò)PCB和散熱器的強(qiáng)制氣流。CUI Devices提供的此類(lèi)產(chǎn)品包括變速直流離心式風(fēng)扇和直流軸流式風(fēng)扇,兩者均采用omniCOOL軸承系統(tǒng)。


珀?duì)柼K


珀?duì)柼≒eltier)熱電模塊可以冷卻半導(dǎo)體和其他小型發(fā)熱元器件,非常適合用在空間有限的外殼中。珀?duì)柼麩犭娦?yīng)是指,當(dāng)電流通過(guò)兩種不同的導(dǎo)電材料時(shí),熱能也會(huì)在這兩種材料之間流動(dòng)。該效應(yīng)由法國(guó)物理學(xué)家讓?珀?duì)柼↗ean Peltier)發(fā)現(xiàn),是塞貝克(Seebeck)效應(yīng)的反效應(yīng)。這些結(jié)構(gòu)緊湊的模塊通常使用P型和N型半導(dǎo)體顆粒,無(wú)需移動(dòng)部件即可實(shí)現(xiàn)從熱源到散熱器的有效熱傳遞。


圖4所示即為熱源和散熱器之間的熱能流動(dòng)。CUI Devices提供一系列標(biāo)準(zhǔn)型和微型珀?duì)柼K,可適應(yīng)高達(dá)+77°C的溫度梯度。


電子應(yīng)用中的潛在熱源及各種熱管理方法

圖4:使用珀?duì)柼K時(shí),從熱源到散熱器的溫度梯度(圖源:CUI Devices)

(作者:貿(mào)澤電子Mark Patrick)


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:

LLC拓?fù)浣Y(jié)構(gòu)設(shè)計(jì)要點(diǎn):如何在更低負(fù)載下進(jìn)入打嗝模式?

電源應(yīng)用中,不同PWM頻率之間的同步設(shè)置

為高電壓PCB設(shè)計(jì)和布局選擇材料

IO-Link改變智能工廠決策的三大原因

IU8202 適用于OWS耳機(jī)的無(wú)POP聲超低功耗400mW單聲道G類(lèi)耳放IC方案


特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉