你的位置:首頁(yè) > 電路保護(hù) > 正文

ESD分析工具——傳輸線路脈沖(TLP)

發(fā)布時(shí)間:2008-10-23

中心論題:

  • 分析時(shí)域反射TLP系統(tǒng)
  • 舉例說(shuō)明TLP的使用

解決方案:

  • 利用TLP可了解集成電路在時(shí)域和電流電平ESD事件時(shí)的電氣特性
  • TLP可測(cè)量I-V曲線
  • TLP系統(tǒng)測(cè)量每個(gè)脈沖后的直流泄漏,可檢測(cè)受損傷的被測(cè)樣品

 

前言
當(dāng)包括人、家具、機(jī)器、集成電路(IC)或電氣線纜等在內(nèi)的個(gè)體或物體充電或放電時(shí),靜電放電(ESD)就會(huì)發(fā)生。在普通的居家或辦公環(huán)境中,靜電放電為人體或物體帶來(lái)極高的電壓,常常高達(dá)數(shù)千伏(kV)。ESD所產(chǎn)生電流的上升時(shí)間可能會(huì)短于1納秒(ns),峰值電流可能高達(dá)數(shù)十安培(A),且持續(xù)時(shí)間能夠長(zhǎng)達(dá)數(shù)十到數(shù)百納秒。除非在設(shè)計(jì)中納入了強(qiáng)健的ESD保護(hù)功能,否則這種電流電平會(huì)損傷電子元件,并擾亂或損傷從手機(jī)到計(jì)算機(jī)等電子系統(tǒng)。業(yè)界已經(jīng)發(fā)展出一些ESD測(cè)試方法,以確保電子元件和系統(tǒng)在遭受它們可能遇到的ESD沖擊時(shí)能夠安然無(wú)恙。

集成電路和晶體管等有源元件采用人體模型(HBM)和充電器件模型(CDM)來(lái)測(cè)試,以此確保它們?cè)谑艿娇刂频腅SD環(huán)境中制造時(shí)能夠不受損傷地予以處理。在非ESD控制環(huán)境中使用時(shí),系統(tǒng)根據(jù)IEC 61000-4-2標(biāo)準(zhǔn)來(lái)測(cè)試。ESD測(cè)試的一項(xiàng)共同特點(diǎn)就是它們所返回的信息有限,無(wú)非就是一個(gè)元件或系統(tǒng)在某種電壓電平承受ESD應(yīng)力,以及該元件或系統(tǒng)在應(yīng)力條件下能夠存續(xù)或不能存續(xù),而沒(méi)有更進(jìn)一步的信息。1985年,Maloney和N. Khurana提出傳輸線路脈沖(TLP)作為一種研究電流和時(shí)域ESD事件下的集成電路技術(shù)和電路行為的方法。這方法已經(jīng)成為集成電路ESD保護(hù)開(kāi)發(fā)的一種不可或缺的工具,特別是自上世紀(jì)90年代中期Barth Electronics推出首個(gè)商用TLP系統(tǒng)以來(lái),猶為如此。

時(shí)域反射TLP
X衰減器防止多重反射。衰減器和被測(cè)器件中間的電壓和電流探測(cè)器將脈沖波形捕獲在數(shù)字示波器的一個(gè)屏幕截圖上。?????
線纜傳輸,經(jīng)過(guò)衰減器后作用于被測(cè)器件(DUT),并從DUT反射回至衰減器。該50?的傳輸線路通過(guò)一個(gè)高阻值電阻來(lái)充電。傳輸線路的長(zhǎng)度決定著脈沖的長(zhǎng)度。輕觸開(kāi)關(guān)S啟動(dòng)脈沖,而脈沖沿著50脈沖長(zhǎng)度為100納秒的時(shí)域反射(TDR)TLP是最常見(jiàn)的版本,如圖1所示。阻抗為50


被測(cè)器件的電壓和電流是事件和反射脈沖之和。對(duì)于100 ns 的被測(cè)量器件而言,其電壓電流對(duì)的測(cè)試方法同樣如圖1所示。在電流-電壓(I-V)曲線上,一個(gè)電壓電流對(duì)提供單一的一個(gè)點(diǎn)。針對(duì)被測(cè)器件的完整I-V曲線由傳輸線路以逐漸增高的電壓來(lái)充電和放電而映射成。商用的100ns?TLP系統(tǒng)而言,事件和反射脈沖在電壓和電流探測(cè)器處交疊。因此示波器可以直接測(cè)量被測(cè)器件在脈沖交疊區(qū)域的電壓和電流。針對(duì)阻抗小于50 TLP系統(tǒng)產(chǎn)生從1mA到高達(dá)10或20A的電流脈沖,直至短路。大多數(shù)TLP系統(tǒng)也能夠測(cè)量每個(gè)脈沖后的直流泄漏,使得系統(tǒng)可以檢測(cè)被測(cè)樣品所受損傷。

TLP使用示例
圖2展示了一個(gè)簡(jiǎn)單的電路元件——接地的門(mén)nMOS晶體管的TLP測(cè)試結(jié)果。接地門(mén)nMOS晶體管常用作CMOS集成電路內(nèi)部的保護(hù)元件。專(zhuān)門(mén)針對(duì)ESD設(shè)計(jì)的nMOS能夠承受相當(dāng)大的電流而不會(huì)受到損傷。但如果不采取恰當(dāng)?shù)脑O(shè)計(jì),nMOS晶體管就對(duì)ESD非常敏感。圖2a顯示的是應(yīng)用于漏極上的TLP應(yīng)力;漏極與接地的源極相對(duì),而門(mén)極則與源極相連。圖2b是一個(gè)nMOS晶體管的典型TLP I-V曲線。在TLP應(yīng)力處于低位時(shí),晶體管關(guān)閉,且沒(méi)有電流流經(jīng)。當(dāng)應(yīng)力電壓達(dá)到漏極的雪崩崩潰等級(jí)時(shí),電流開(kāi)始流出。電壓和電流分別為Vt1和It1時(shí),足夠大的電流流出,導(dǎo)通由漏極(集電極)、襯底(基極)和源極(射極)形成的寄生雙極晶體管。雙極晶體管導(dǎo)通時(shí),電壓會(huì)下降,這通常稱(chēng)作雙極快速反回(bipolar snapback)。雙極區(qū)域由快速反回電壓Vsb和快速反回區(qū)域的阻抗R來(lái)鑒定特性。快速反回區(qū)域在第二個(gè)擊穿點(diǎn)Vt2,It2處終結(jié)。

當(dāng)結(jié)合圖2c中所示的泄漏測(cè)量時(shí),TLP I-V曲線最為有用。每個(gè)TLP脈沖之后進(jìn)行nMOS的泄漏測(cè)量。泄漏在圖上對(duì)應(yīng)于x軸,而脈沖電流為y軸。圖2b和圖2c的y軸比例是一致的,便于進(jìn)行對(duì)比。圖2b和圖2c中所顯示的電流和電流為Vt1和It1時(shí)從雪崩到快速反回的轉(zhuǎn)變并未導(dǎo)致泄漏增加。而在Vt2, It2時(shí)的第二個(gè)擊穿轉(zhuǎn)變也并未帶來(lái)器件損傷。圖2b中的參數(shù)提供了nMOS ESD特性的很多的信息。Vt1是需要觸發(fā)nMOS保護(hù)特性時(shí)的電壓。Vsb和R能用于預(yù)測(cè)發(fā)生ESD事件時(shí)的nMOS電壓降。It2測(cè)量的是晶體管在ESD事件時(shí)能夠承受的電流能力。

結(jié)論
要了解集成電路在時(shí)域和電流電平ESD事件時(shí)電氣特性,TLP是一項(xiàng)不可或缺的工具。研究人體模型(HBM)時(shí)用的是100 ns長(zhǎng)度的脈沖,而近期5 ns甚至更短的極快TLP(VF-TLP)脈沖也已經(jīng)探索了充電器件模型(CDM)的時(shí)標(biāo)。TLP可用于單獨(dú)的電路元件、輸入和輸出緩沖器,以及完整的集成電路。除了測(cè)量I-V曲線,TLP還可用于研究時(shí)間相關(guān)性和導(dǎo)通時(shí)間等特性。

焊接工藝與測(cè)試社區(qū)看看

要采購(gòu)晶體么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉